

BC Geological Survey Assessment Report 39895

Assessment Report Title Page and Summary

Ministry of Energy and Mines BC Geological Survey

21967,21967,29526

TYPE OF REPORT [type of survey(s)]: Geochemical	TOTAL COST: 38,711.83						
аuтнок(s): Susan Rolston	SIGNATURE(S): Susar Foto						
	YEAR OF WORK: 2021						
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S)	SOW #5856122 April 22 to October 17						
PROPERTY NAME: Bluff							
CLAIM NAME(S) (on which the work was done): BL EXT, BLAKE, CO	W 1, COW2						
COMMODITIES SOUGHT: Cu,Au,Mo,Ag,Zn							
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:							
MINING DIVISION: Clinton	NTS/BCGS: BCGS 092 N77						
LATITUDE: <u>51</u> ° <u>43</u> ' <u>20</u> " LONGITUDE: <u>124</u>	o 37 '20 " (at centre of work)						
owner(s): 1) Susan Rolston	_ 2)						
MAILING ADDRESS: PO Box 4116 Williams Lake, BC,Canada, V2G2V2							
OPERATOR(S) [who paid for the work]: 1) Susan Rolston	2)						
1) Susan Rolston	_ 4						
MAILING ADDRESS: PO Box 4116' Williams Lake, BC, Canada, V2G2V2							
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur Cretaceous volcanics, and isite, basalt, rhyolite flows intruded by	e, alteration, mineralization, size and attitude): quartz feldspar porphyry,diorite and feldspar porphyry.						
Mineralization 1- Cu/Au porphyry and qz/carb veins,fracture co							
3 - Au,Aspy in clay altered and silicified shear 200m x 400m, N							

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic		_	
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for))		
soil 32 soil samples analy	sed for 51 elements		\$20,914.03
Silt	N .		
Rock 31 rock samples ana	lyzed for 51 elements	1017460,1069906	\$17,797.80
Other	-		
DRILLING (total metres; number of holes, size	e)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
	s)/trail		
Underground dev. (metres)			
Other			
		TOTAL COST:	\$38,711.83

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date

Confirmation

Change

Recorder: ROLSTON, SUSAN

ELIZABETH (147016)

ROLSTON, SUSAN ELIZABETH (147016) Submitter:

Recorded: 2021/DEC/14

Effective: 2021/DEC/14

D/E Date: 2021/DEC/14

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. Please attach a copy of this confirmation page to your report. Contact Mineral Titles Branch for more information.

Event Number:

5856122

Work Type:

Technical Work

Technical Items:

Geochemical, PAC Withdrawal (up to 30% of technical work required), Prospecting

Work Start Date: Work Stop Date: 2021/APR/22 2021/OCT/17

Total Value of Work: Mine Permit No:

\$ 38711.83 1620560

Summary of the work value:

Title Number	Claim Name	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
541943	BLUFF	2006/SEP/25	2024/APR/24	2024/APR/24	0	740.39	\$ 0.00	\$ 0.00
547801	HORNE	2006/DEC/21	2024/MAR/20	2024/mar/20	0	200.02	\$ 0.00	\$ 0.00
848082	BLUFF11	2011/MAR/04	2020/DEC/20	2022/DEC/20	730	160.10	\$ 6403.86	\$ 0.00
848734	BLUFF 112	2011/MAR/12	2020/DEC/20	2022/DEC/20	730	60.04	\$ 2401.68	\$ 0.00
983993	BORNITE	2012/MAY/05	2020/DEC/20	2022/DEC/20	730	20.01	\$ 800.36	\$ 0.00
984009	EXT	2012/MAY/05	2020/DEC/20	2022/DEC/20	730	100.02	\$ 4000.86	\$ 0.00
1012223	BUTT2	2012/AUG/24	2020/DEC/20	2022/DEC/20	730	20.02	\$ 800.80	\$ 0.00
1012228	BUTT 1	2012/AUG/24	2020/DEC/20	2022/DEC/20	730	20.01	\$ 800.43	\$ 0.00
1013712	SOUTH BUTLER	2012/OCT/13	2020/DEC/20	2022/DEC/20	730	40.03	\$ 1601.18	\$ 0.00
1017460	BLAKE	2013/MAR/03	2020/DEC/20	2022/DEC/20	730	40.05	\$ 1601.81	\$ 0.00
1019192	BUTTS2	2013/MAY/03	2020/DEC/20	2022/DEC/20	730	120.10	\$ 4804.12	\$ 0.00
1019280	COW2	2013/MAY/06	2020/DEC/20	2022/DEC/20	730	180.13	\$ 7205.10	\$ 0.00
1019282	COW 1	2013/MAY/06	2020/DEC/20	2022/DEC/20	730	220.10	\$ 8803.98	\$ 0.00
1030586	BLAKE2	2014/AUG/27	2020/DEC/20	2022/DEC/20	730	20.02	\$ 732.31	\$ 0.00
1034569	NEWMAC	2015/MAR/04	2020/DEC/20	2022/DEC/20	730	40.04	\$ 1360.75	\$ 0.00
1034920	BLAKE S	2015/MAR/23	2020/DEC/20	2022/DEC/20	730	120.15	\$ 4052.23	\$ 0.00
1034921	MATHEX	2015/MAR/23	2020/DEC/20	2022/DEC/20	730	60.06	\$ 2025.61	
1069906	BLAKEEXT	2019/JUL/27	2020/DEC/20	2022/DEC/20	730	40.05	\$ 480.61	\$ 0.00
1081335	BL EXT	2021/FEB/22	2022/FEB/22	2022/FEB/22	0	480.32	\$ 0.00	\$ 0.00

Financial Summary:

Total applied work value: \$47875.69

PAC name:

Rolston Susan Elizabeth

Debited PAC amount:

\$ 9163.86

Credited PAC amount:

\$ 0

TCHAIKAZAN RESOURCES INC.

Box 32, Tatla Lake, British Columbia, Canada VOL 1V0 Ph: 250 476 1218

BLUFF PROPERTY Horne, Bluff, Bluff 11, Bluff 112, EXT, Cow1, Cow2, South Butler, Bornite, Butt1, Butt2, Butts2, Newmac, Blake, Blake S, Blake2, Mathex, Blakeext and BL EXT Claims

Clinton Mining Division BCGS 092 N 77

Lat 51° 43' 20" N Long 124° 37' 20" W

ASSESSMENT REPORT

on the

ROCK and SOIL GECHEMICAL PROGRAM

April 22,2021 to October 17,2021

By

Susan Rolston
Box 32
Tatla Lake, BC, Canada
V0L1V0

March 1, 2022

Table of Contents

1.0	Summery	3
2.0	Location	6
3.0	Claims	8
4.0	Physiography and Local Infrastructure	10
5.0	History and Previous Work	10
6.0	Geology	14
	6.1 Regional Setting	14
	6.2 Local Geology	15
7.0	Work Program	15
	7.1 Geochemical Rock sampling	17
	7.2 Geochemical Soil Sampling	22
8.0	Discussion and Interpretation	26
9.0	Statement of Costs	27
10.0	0 Statement of Qualifications	28
11.0	O Bibliography	29
Арр	pendix 1 – Rock and Soil Geochemistry Assays	31
	t of Figures	
	ure 1 - Location Map	
_	ure 2 - Claim Map	
_	ure 3 - Test Pits, Soil and Rock Sample Locationsure 4 - Rock Geochemistry BL EXT and BLAKE	
	ure 5 - Rock Geochemistry COW 1 and COW2	
_	ure 6 - Soil Geochemistry COW 1 and COW2	
List	t of Tables	
	ole 1 - Claim Status	8
	ole 2 - Rock Sample Descriptions	
	ole 3 - Rock Geochemistry Assays	
	ole 4 - Locations and Soil Sample Locations and Descriptions	
	ole 5 - Soil Geochemistry Assays	
Tah	ale 6 - Statement of costs	27

1.0 Summary

The Bluff Property of Tchikazan Resources Inc. is situated about 22 km south of the village of Tatla Lake BC which is on British Columbia Highway 20 about 240 km west of Williams Lake BC. The property is located on BCGS map 092N 077 and consists of Tenures 1012223, 1012228, 541943, 1013712, 547801, 1017460, 848082, 848734, 1019192, 984009, 983993, 1019282, 1019280, 1034569, 1034920, 1030568,1034921,1069906 and 1081335 owned 100% by Susan Elizabeth Rolston. The property is centered approximately on Latitude 51° 45′ 25″ N Longitude 124° 41′ 04″ W.

The Bluff claim block has an exploration history dating back to the 1940's when precious metal veins were discovered on Butler Mountain. The ground was worked for its copper/moly/gold potential by several operators from the 1960's through to the present.

The Bluff Property was staked as a result of prospecting activity by the local landowner during the course of an earlier exploration program by Newmac Resources Inc. on the adjacent property. Sue and Les Rolston own a small local ranch and have provided room, board and logistical assistance to Newmac Resources during the course of previous exploration programs. Mrs. Rolston developed a keen interest in prospecting and had located a single specimen exhibiting malachite and tourmaline mineralization. With encouragement from a Mincord Exploration Consultant she continued her exploration and delineated a broad tourmaline/chalcopyrite zone with occasional spectacular copper carbonate coated cliff faces. When the extent and limits of the mineralization became clearer, claims were staked and a property agreement was struck between Susan Rolston and Newmac.

Late in 2006, a geophysical survey (mag. and IP), was completed by Alan Scott Geophysics on the newly staked Bluff claims. Based on the results of this survey, a diamond drilling program was executed, in two phases, between February 14, 2007 and May 23, 2007. The results of that drilling program were inconclusive. However un-split core still racked on site displays varying degrees of copper mineralization.

Subsequent to the 2007 drill program, surrounding Newmac claims were inadvertently allowed to lapse. As claims became available, Sue Rolston acquired them to reconstitute the land holdings package. Work comprised prospecting and geochemical rock sampling over the core Bluff claims and the newly acquired claims.

In 2012, Susan Rolston formed Tchaikazan Resources Ltd. to manage the expanding land holdings. Work since that time, has been undertaken on behalf of the company. The 2012 geochemical program consisted of rock sampling on three areas of the Bluff claim block. Notable samples were taken below the Bluff Lake road in the area of Painted Bluff showing. Samples Blu1,

Blu2 and Blu3 returned copper values of 3190ppm, 2330ppm and 6250ppm respectively. Sample Blu1 also ran 2.02g/t Au, 2260ppm As and 889ppm Zn. Eight of twelve samples located in the area of the Bornite showing were anomalous in copper.

The 2013 work program comprised geochemical sampling of 22 rocks, 86 drill core intervals and six soils from various locations on the Bluff claims and the newly acquired land package. Assays returned from BL 08-07indicate two broad zones of anomalous copper values: 21.95m @ 221.0ppm Cu from 136.2m to 158.1m and 40.2m @ 146.5ppm Cu from 170.2m to 210.4m. Sample Cow2-107, float located directly beneath a gossanous outcrop on the western bank of , returned assays of 2.01gpt Au, 1070gpt Ag, 5.02% Pb and 5.25% Zn, may indicate the westerly extension of the Cow Vein system. In addition, 7.0 kilometres of trail was GPS surveyed for the purpose of determining the condition of the trails and extent of access they would provide to the north and eastern claims.

The 2014 work program comprised geochemical sampling of 27 rocks and five C-horizon soils from the Butler Lake area, Bornite Zone and Noranda Pits. In addition, 7.0 kilometres of trail was cleared to accommodate ATV access to the north and eastern portions of the claims. In early spring, a compilation of all available historic data was performed. Continued prospecting and geochemical rock sampling is recommended west of Butler Lake and the east fork of Butler Creek upstream of the confluence of East and West Butler Creeks. One diamond drill hole is recommended to test the coincident copper and I.P. anomalies in the area of the Noranda Pits.

The August 2015 work program included prospecting in the West Butler Creek area just upstream from the confluence of East and West Butler Creeks. In addition, a review of mineralized structures in the "Pretty Pile" area, the Painted Bluffs and the Slide area was undertaken to more accurately locate and orient the local copper/gold and molybdenum mineralization. The Pie Grid was established with the cutting of 8.3 kilometres of gridline and trail in preparation for I.P. and Mag surveys that later defined a moderate chargeability/resistivity anomaly. The newly acquired Math claim was prospected and two rock samples were sent for assay. Two rock sample locations in the vicinity of West Butler Creek were resurveyed using GPS for the purpose of incorporating into the Tchaikazan assessment report titled "Assessment Report on the Rock Geochemistry and Geological Program" (MacDonald, R.C., 2015).

The 2016 geochemical program produced a coincident Cu/As/Sb geochemical anomaly over the geophysical anomaly defined in the 2015 program. Mapping along the Hayfield bluff indicate a possible mineralized system in the vicinity of the Painted Bluff copper showing and diamond drill hole BL07-08.

Due to wide spread forest fires in Cariboo- Chilcotin area during the 2017 field season, only two days of geochemical rock sampling were carried out. An extension to the 2017 assessment reporting period was granted and the bulk of the geochemical surveys were performed in July and August 2018. The program comprised 14 rock samples and 234 soil samples.

The soil geochemical program identified two moderate Cu@+100ppm/As/Sb anomalies. One over 100 metres on Line 93+00N from 110+50E to 111+25E and a two station anomaly on the

south-west end of the talus traverse TT18002 and TT18003. A weaker Cu/As/Sb anomaly is located at the west end of line 95+00N between 94+25E and 95+25E. No further exploration is recommended in the south-eastern portion of the claims. The source of the granodiorite boulders should be determined specifically upslope to the east to the east of the boulders and south of the copper anomaly defined on line 93N. Continued geochemical sampling and mapping is recommended to the south-east of Butler Lake in the vicinity of the Cu/As/Sb anomaly at the west end of line 95N.

2019 program comprised rock geochemical and geological mapping on the BLUFF, SOUTH BUTLER, BUTTS2, BLAKE S and BLAKEEXT claims. A total of 25 rocks were sampled of which 21 were sent for assay. Geologic mapping was carried out on 18 locations as the samples were collected. The program was successful in extending a copper rich tourmaline breccia from its discovery outcrop to 500 metres to the north-west along a 330° to 340° trend along the Hayfield Bluffs. Sampling in the area of the Painted Bluff extended that mineralized zone some 150 to the south-east along a 135° trend. Also, 550 metres to the east of the painted Bluff, the Slide zone sampling returned a 1360ppm Cu/22.9ppm Pb/1.15ppb Ag assay from outcrop that previously returned anomalous molybdenum tenors.

On the recently staked BLAKEEXT claim rock sample 36 returned assays of 1860ppm Cu and 2.44ppm Ag indicating similar mineralization to the math showing located 1300 metres to the north north-east. Sampling along a gossanous ridge in the St. Teresa area, located approximately 550 metres west of Butler Lake returned two samples anomalous in copper; RM19005 @ 461ppm Cu and RM19007 @ 433ppm Cu.

In the fall of 2019 SJV Consultants was commissioned to compile a Geophysical Interpretation Report including Airborne Magnetic, VLF-EM and EM Induced Polarization and Ground Magnetic Surveys on the Bluff Property. This report was compiled from all the available geophysical, geological and geochemical data available in the archives through to the summer 2019, three and a half decades of data,1984 to 2019.

In the May of 2020 a Notice of Work was submitted for 32 Test Pits for soil sampling, 4 Drill holes and 2 trenches. A multi-year permit from August 1,2020 to June 30,2023 was approved and received in October 2020. Due to the late approval, no work was performed on the property in 2020. With the Covid pandemic uncertainties all report filing deadlines were advanced to December 2021 and all tenures are Pending.

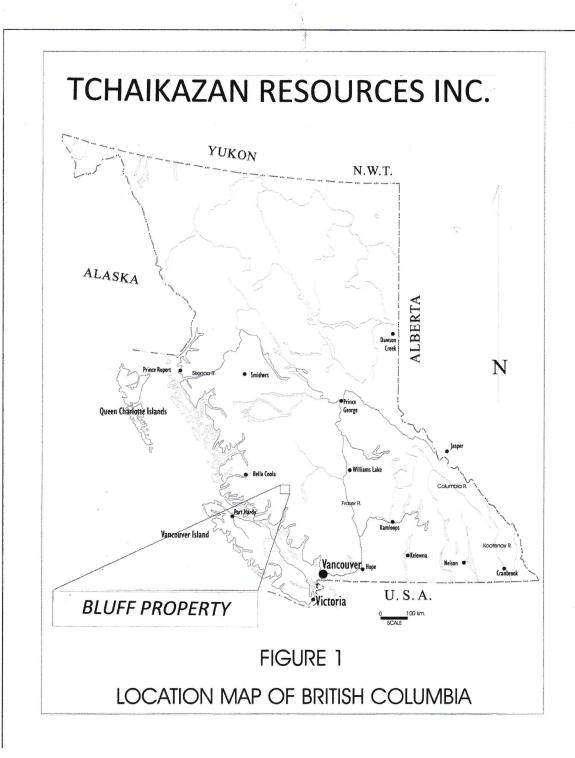
A portion of the work planned to this season is to initiate Phase 1 which is digging 32 test pits along the mining access road, also identified on the BC Recreation Map for this area as Butler Peak Trail. The only obligation required is to notify Parks and Recreation 10 days prior to commencement of work so it can be posted onto their web site.

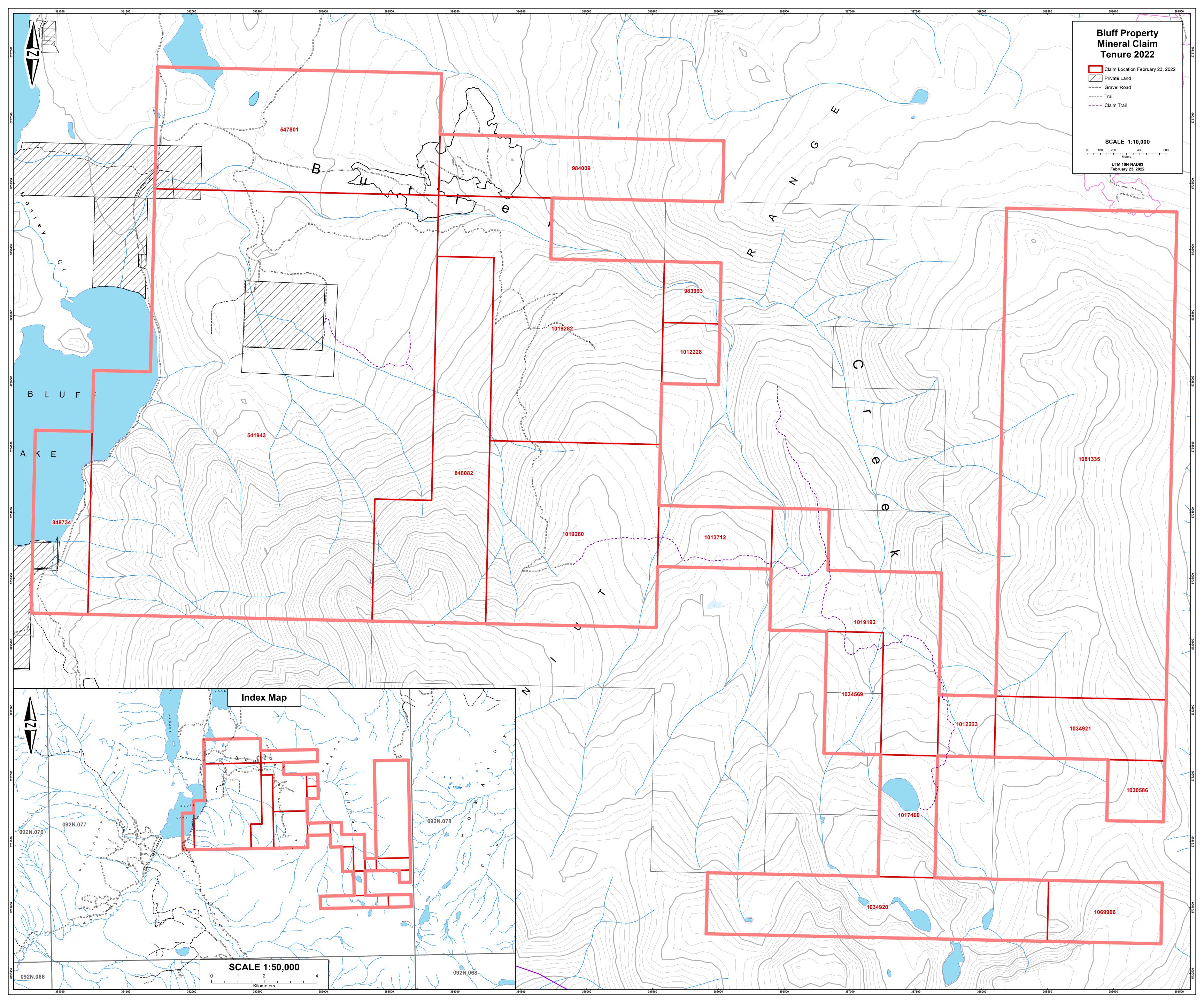
Prospecting and sampling is planned for the newly acquired tenure identified on the attached Bluff Property Map as BL EXT title number 1081335.

The Bluff Property holds potential for mineralization similar to the Fish Lake (Prosperity) Cu/Au deposit located some 70km to the East; The Skinner Mountain lode Ag/Au veins, 18km east and the Blackhorn Mountain lode Au/Ag veins 20km to the south.

2.0 Location and Access

The property is located on BCGS mapsheet 092 N 077 and centered on Lat 51° 45′ 25″ N Long 124° 41′ 04″ W. The Bluff property is situated in the Clinton Mining Division approximately 250 km west of Williams Lake BC. There is good all weather paved road access from Williams Lake west on Highway 20 to Tatla Lake. About one kilometre before reaching the village of Tatla Lake, is the Tatlayoko Road turnoff. Travel south on good all weather gravel road about four kilometres to the Bluff Lake Road (exit west) and follow for 14.5 km to the Rolston Ranch access road. Turn left at the Butler Peak Recreation Sign and follow 2.7km to the Ranch. Beyond the Ranch, access is difficult and gained only by ATV, foot or helicopter. Local helicopter service is provided by White Saddle Air Services at the south end of Bluff Lake.




Figure 1 – Location Map

3.0 Claims

The Bluff Property comprises nineteen claims totalling 134 units, covering 2681.66 hectares. The claims are owned 100% by Susan Elizabeth Rolston.

	Title				Good To
Claim Name	Number	Units	Area/ha	Issue Date	Date
BLUFF	541943	37	740.39	2006/sep/25	2024/apr/24
HORNE	547801	10	200.02	2006/dec/21	2024/mar/20
BLUFF11	848082	8	160.10	2011/mar/04	2022/dec/20
BLUFF 112	848734	3	60.04	2011/mar/12	2022/dec/20
BORNITE	983993	1	20.01	2012/may/05	2022/dec/20
EXT	984009	5	100.02	2012/may/05	2022/dec/20
BUTT2	1012223	1	20.02	2012/aug/24	2022/dec/20
BUTT 1	1012228	1	20.01	2012/aug/24	2022/dec/20
SOUTH BUTLER	1013712	2	40.03	2012/oct/13	2022/dec/20
BLAKE	1017460	2	40.05	2013/mar/03	2022/dec/20
BUTTS2	1019192	6	120.10	2013/may/03	2022/dec/20
COW2	1019280	9	180.13	2013/may/06	2022/dec/20
COW 1	1019282	11	220.10	2013/may/06	2022/dec/20
BLAKE2	1030586	1	20.02	2014/aug/27	2022/dec/20
NEWMAC	1034569	2	40.04	2015/mar/04	2022/dec/20
BLAKE S	1034920	6	120.15	2015/mar/23	2022/dec/20
MATHEX	1034920	3	60.06	2015/mar/23	2022/dec/20
BLAKEEXT	1034921	2	40.05	2019/jul/27	2022/dec/20
BL EXT	1081335	24	480.32	2021/feb/22	2022/dec/20

Table 1 - Claim Status

4.0 Physiography and Local Infrastructure

In the vicinity of the property, approaching Bluff Lake, the mountains of the coast range rise dramatically from the generally rolling terrain of the western Chilcotin Plateau. The small relatively shallow ponds and lakes or long sinuous lakes occupying old river beds and valleys of the plateau give way to larger, deeper lakes within ice scoured valleys within a relatively short distance south, from Bluff Lake the highest peaks (in excess of 4000 m) in the coast range are found, with attendant ice fields, numerous valley Glaciers, and related terrain.

The property receives on average, less than one metre of snow annually and is generally snow free from mid-April to mid to late November. With exceptions of the more precipitous and extreme elevations, the property can be worked in all seasons.

The property is extensively covered with glacial overburden consisting of basal and ablation tills and glacio-fluvial deposits, except where slopes are steeper, this includes almost all of the more easily accessible portions of the property. The overburden varies in thickness and reaches more than 100m thick. Outcropping bedrock is nonexistent on the lower and gentler slopes.

Vegetation in the area consists of mainly coniferous forest with local patches of deciduous poplar or aspen. Locally, but not in the work area, there has been clear cut logging and corresponding new roads since the 1980's with earlier re-grown cut blocks evident. In recent decades there has been an endemic infestation of the mountain pine beetle that has affected a vast area of central BC including the Bluff Property.

The settlement of Tatla Lake is on highway 20 near the height of land between Tatla Lake of the Fraser-Chilcotin drainage basin and the coastal drainage of the Mosley Creek-Homathko River and Klinaklini River systems, which drains into Bute Inlet.

Tatla Lake offers basic services: fuel, lodging, meals, a general store and post office. There is also a local health nurse and first aid station. Most supplies must come from Williams Lake, about 220 Km to the east. Freight and transportation services along Highway 20 are very good with generally next day delivery of goods from Williams Lake possible.

5.0 History and Previous Work

Previous to the 1960's and possibly into the 1940's precious metal veins were discovered on "Butler Mountain". The knowledge that there was precious metal potential on Buffer Mountain is supported by the fact that the Butlers, owners of the cattle ranch on the lower reaches of Butler Creek, had panned small amounts of gold and recovered at least one "pea sized" nugget from Butter Creek. The Butlers seasonally grazed cattle in the alpine meadows and herded their cattle to higher open range on a cow and horse trail that crossed clay altered and gossanous exposures below the Macdonald (Cow trail) veins.

Sometime in the 1960's American Air Force personnel based at Puntzi Lake, became knowledgeable about the precious metal veins on the flank of Butler Mountain and placed claim posts following American federal staking laws. It is doubtful whether these claims were actually recorded in British Columbia.

In 1966, Puntzi Lake Resident, A. McDonald staked the St.Teresa Claims to cover the veins. Sometime after 1966 and for the better part of fifteen years, MacDonald laboured with a small bulldozer to build a pickup truck road to the veins. MacDonald reached the veins about 1982, and died shortly thereafter. The Title to the St.Teresa claim was transferred to his nephew Don Rose.

During the early 1970's, Noranda Exploration Company Limited staked claims in the Butler Lake area after regional sampling indicated anomalous values for copper, moly and gold. Noranda completed geological, geophysical (IP) and geochemical (soil) programs.

In 1983, J.W. Morton travelled up the MacDonald road to investigate a set of quartz veins exposed in three hand trenches. Imperial Metals subsequently optioned the claims from Don Rose and staked additional claims. Soil grid sampling and bulldozer trenching in 1984 yielded assays up to 2.6-oz/ton gold and 20.5 oz/ton silver from trench rubble. Imperial Metals drilled two holes from 1 set up on the vein structure before cold weather ended the program.

In 1984, Ryan Exploration, a subsidiary of US Borax located a significant metal anomaly on the main channel of Butler Creek and staked the area of Butler Lake and the early Noranda discoveries. The claims lapsed in 1987.

In 1987 Canavex Resources Limited purchased the St Teresa claim from Don Rose and staked the Newmac (an acronym for New MacDonald) claims around them. The property was optioned to Jaqueline Gold Corp. that same year. Subsequent work revealed porphyry style mineralization and alteration in Butler Creek bed.

In 1988 Jaqueline Gold expanded their grid and completed an IP survey preparatory to drilling two diamond drill holes later that year. The second drill hole intersected 157m grading 0.18% copper including 17m grading 0.13%Copper and 340 ppb gold. Jaqueline subsequently returned the property to Canavex.

In 1989, Canavex optioned the property to Noranda (their second involvement with the property). They competed 30km of IP survey, 37 km of ground Mag Survey, analysed 1203 soil samples, 158 rock samples, and completed 435 line miles of helicopter airborne geophysical survey. In 1991 Noranda completed 1939 m of diamond drilling in seven holes before returning the property.

In 1998, the Newmac Property was optioned to Ascot Resources Ltd. Ascot completed an additional 4 holes (875m.) The Ascot program while failing to identify economic mineralization, did establish that the porphyry system was potentially a very large deposit.

In 2004, Newmac Resources Inc. acquired the claims from Canavex and conducted 17.8km of IP and mag surveys along the Macdonald road ("C" grid) where altered and pyritic rocks had

been noted. In 2006, Newmac completed a total of 6 widely spaced drill holes for a total of 1130.4 m. The widely spaced drilling failed to refine or direct the exploration beyond the knowledge base already at hand.

During 2004 to 2005, while Mincord Exploration Consultants crews were staying with the Rolstons, Mrs. Rolston had shown them rocks and samples she had collected from nearby outcrops on and adjacent to their ranch. She was encouraged to do more prospecting and sampling, which eventually resulted in the staking of the Bluff claims. The Bluff Claims contained widespread tourmalinized, fractured and brecciated volcanic rocks with occasional chalky (intrusive?) clasts and common to locally abundant chalcopyrite, pyrite & bornite. The rocks were primarily located near the base of Butler Mtn. East of Bluff Lake. The obvious potential of the Bluff claims became increasingly apparent as Mrs. Rolston did more sampling.

An option agreement for the claims was concluded and late in 2006, geophysical surveys totalling 28.2 km of IP & mag were completed by Alan Scot, Geophysicist. The geophysical program delineated several targets to be followed up by diamond drilling. In early 2007, a diamond drilling program was initiated which completed 2389.4 m of NQ coring. Results of that program were inconclusive. Drill core was not systematically sampled and that core which was assayed did not return any significant results. However, un-split core stored on site at the Rolston Ranch shows varying degrees of copper mineralization.

Subsequent to the 2007 drill program, surrounding Newmac claims were inadvertently allowed to lapse. As claims became available, Susan Rolston acquired them to reconstitute the land holdings package. Work comprised prospecting and geochemical rock sampling over the core Bluff claims and the newly acquired claims.

In 2012, Susan Rolston formed Tchaikazan Resources Inc. to manage the expanding land holdings. Work since that time, has been undertaken on behalf of the company. The 2012 geochemical program consisted of rock sampling on three areas of the Bluff claim block. Notable samples were taken below the Bluff Lake road in the area of Painted Bluff showing. Samples Blu1, Blu2 and Blu3 returned copper values of 3190ppm, 2330ppm and 6250ppm respectively. Sample Blu1 also ran 2.02g/t Au, 2260ppm As and 889ppm Zn. Eight of twelve samples located in the area of the Bornite showing were anomalous in copper.

The 2013 work program comprised geochemical sampling of 22 rocks, 86 drill core intervals and six soils from various locations on the Bluff claims and the newly acquired land package. Assays returned from BL 08-07indicate two broad zones of anomalous copper values: 21.95m @ 221.0ppm Cu from 136.2m to 158.1m and 40.2m @ 146.5ppm Cu from 170.2m to 210.4m. Sample Cow2-107, float located directly beneath a gossanous outcrop on the western bank of , returned assays of 2.01gpt Au, 1070gpt Ag, 5.02% Pb and 5.25% Zn, may indicate the westerly extension of the Cow Vein system. In addition, 7.0 kilometres of trail was GPS surveyed for the purpose of determining the condition of the trails and extent of access they would provide to the north and eastern claims.

The 2014 work program comprised geochemical sampling of 27 rocks and five C-horizon soils from the Butler Lake area, Bornite Zone and Noranda Pits. In addition, 7.0 kilometres of trail was cleared to accommodate ATV access to the north and eastern portions of the claims. In early spring, a compilation of all available historic data was performed. The compilation was done to facilitate spatial analysis of all geochemical and geophysical data and three dimensional modelling on mineralized drill holes. Continued prospecting and geochemical rock sampling is recommended west of Butler Lake and the east fork of Butler Creek upstream of the confluence of East and West Butler Creeks. One diamond drill hole is recommended to test the coincident copper and I.P. anomalies in the area of the Noranda Pits.

The August 2015 work program included prospecting in the West Butler Creek area just upstream from the confluence of East and West Butler Creeks. Fifteen samples, six grabs and nine chips, were collected for assay from gossanous outcrops exposed along the deeply incised cliff faces bounding West Butler Creek. In addition, a review of mineralized structures in the "Pretty Pile" area, the Painted Bluffs and the Slide area was undertaken to more accurately locate and orient the local copper/gold and molybdenum mineralization. In October 8.3 kilometres of gridline and trail were cut in preparation for I.P. and Mag surveys. The newly acquired Math claim was prospected and two rock samples were sent for assay. Two rock sample locations in the vicinity of West Butler Creek were resurveyed using GPS for the purpose of incorporating into the Tchaikazan assessment report titled "Assessment Report on the Rock Geochemistry and Geological Program" (MacDonald, R.C., 2015).

The 2016 geochemical program produced a coincident Cu/As/Sb geochemical anomaly over the geophysical anomaly defined in the 2015 program. Mapping along the Hayfield bluff indicate a possible mineralized system in the vicinity of the Painted Bluff copper showing and diamond drill hole BL07-08.

Due to wide spread forest fires in Cariboo- Chilcotin area during the 2017 field season, only two days of geochemical rock sampling were carried out. An extension to the 2017 assessment reporting period was granted and the bulk of the geochemical surveys were performed in July and August of 2018. Six rock samples were taken in 2017 and 8 samples were taken in 2018. Two hundred and thirty four soil samples were taken over 8 days in July and August of the 2018 field season.

The soil geochemical program identified two moderate Cu@+100ppm/As/Sb anomalies. One over 100 metres on Line 93+00N from 110+50E to 111+25E and a two station anomaly on the south-west end of the talus traverse TT18002 and TT18003. A weaker Cu/As/Sb anomaly is located at the west end of line 95+00N between 94+25E and 95+25E. These anomalies may indicate a mineralized porphyry system at depth.

The rock geochemical program returned a number of samples of interest. Sample BLAKE18007 returned values of Cu/2,630ppm, Ag/3.32ppm and Zn/259. This a float sample and does not appear to correlate to soil values in the vicinity. The boulders of granodiorite float, in particular BLAKE18009 and BLAKE18012 returned anomalous values in copper, 170 ppm and

143ppm respectively. Though only anomalous, the granodiorites are intensely clay altered and may represent a center of mineralization.

2019 program comprised rock geochemical and geological mapping on the BLUFF, SOUTH BUTLER, BUTTS2, BLAKE S and BLAKEEXT claims. A total of 25 rocks were sampled of which 21 were sent for assay. Geologic mapping was carried out on 18 locations as the samples were collected. The program was successful in extending a copper rich tourmaline breccia from its discovery outcrop to 500 metres to the north-west along a 330° to 340° trend along the Hayfield Bluffs. Sampling in the area of the Painted Bluff extended that mineralized zone some 150 to the south-east along a 135° trend. Also, 550 metres to the east of the painted Bluff, the Slide zone sampling returned a 1360ppm Cu/22.9ppm Pb/1.15ppb Ag assay from outcrop that previously returned anomalous molybdenum tenors.

On the recently staked BLAKEEXT claim rock sample 36 returned assays of 1860ppm Cu and 2.44ppm Ag indicating similar mineralization to the math showing located 1300 metres to the north north-east. Sampling along a gossanous ridge in the St. Teresa area, located approximately 550 metres west of Butler Lake returned two samples anomalous in copper; RM19005 @ 461ppm Cu and RM19007 @ 433ppm Cu.

In addition SJV Consultants was retained to complete a geophysical interpretive report on the Bluff copper-gold prospect in late 2019.

In October of 2020 a multi-year permit was approved for 30 test pits, 2 trenches and 4 drill holes. Due to the outbreak of Covid 19 the 2020 field season was carried over to 2021.

6.0 Geology

6.1 Regional Setting

The Bluff claims are located along the southwestern margin of the "Tyaughton Trough", a late Jurassic depositional basin that, in this area, is predominantly filled with Lower Cretaceous volcanic and sedimentary rocks. The Tyaughton Trough in the vicinity of the Bluff Claims is a structural block bounded by two significant breaks:

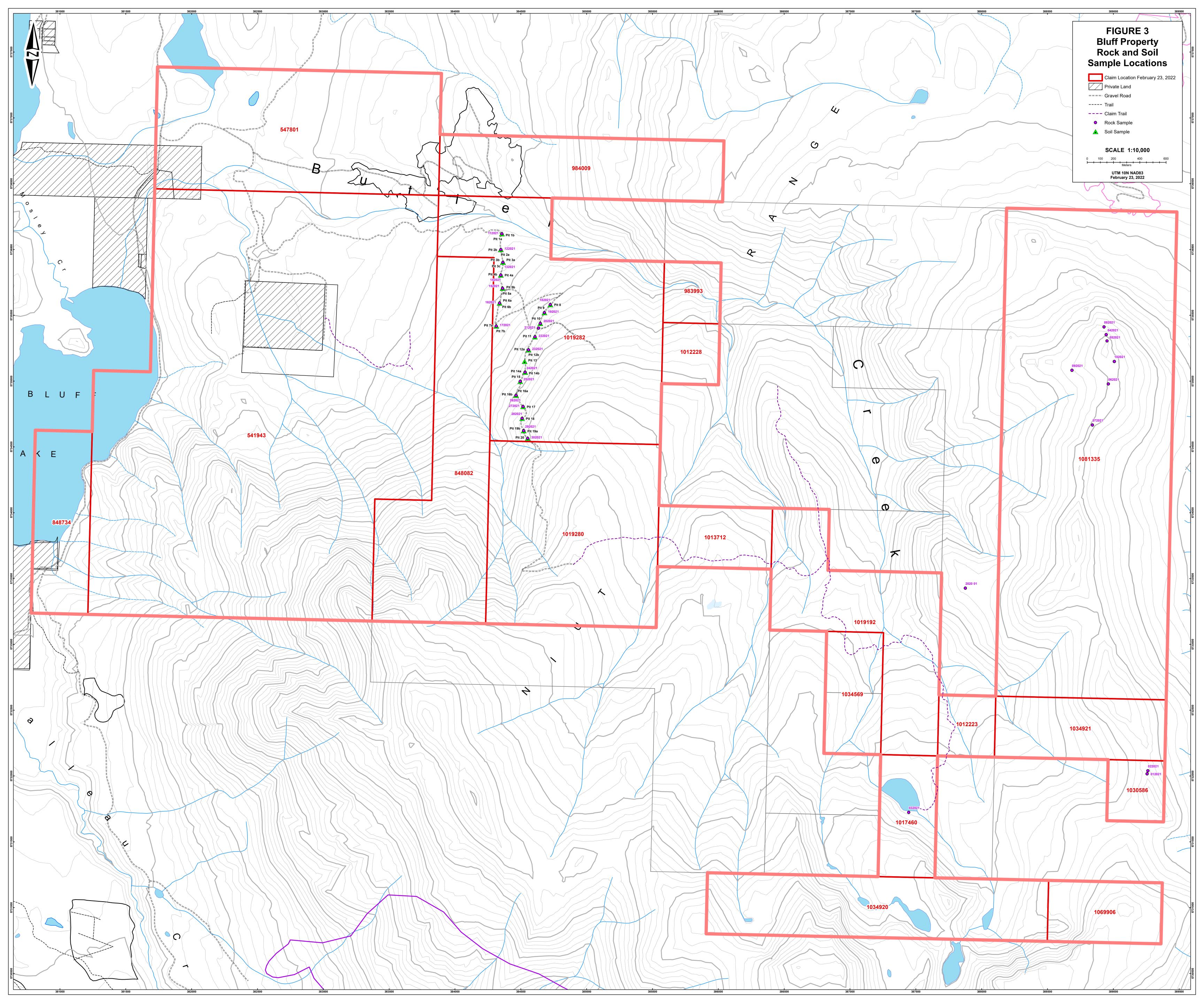
- The Yalakom Fault is a right lateral transcurrent fault striking west northwest with 130 to 190 km of offset and forms the north bounding structure of the basin.
- The Tchaikazan Fault is also a right lateral, west-northwest trending transcurrent fault, with an estimated offset of 32 km and forms the southern bounding structure.

The Tyaughton Basin collectively represents a defining feature of the Cordillera, which separates the Coast Mountains and Coast Plutonic Complex to the southwest from the Chilcotin Plateau in the Intermontane Belt to the northeast. A third and essentially parallel fault, The Niut Fault, runs through Butler Mountain.

6.2 Local Geology

Rock outcropping around the Bluff Property is restricted to the bluffs overlooking Bluff Lake, the slopes of Butter Mountain and to the north, beyond Butler Creek, the upland sides of the valley. The ridge on the western side of the claims overlooking Bluff Lake and backing onto the Rolston Ranch is composed of medium to dark green chloritic andesite, moderately hard, with traces of pyrite, and minor epidote alteration.

As the ridge ascends towards Butler Mountain a hard, medium grey-green andesite with pale, diffuse white feldspar phenocrysts becomes common. This rock has been described elsewhere as "Hornfels". North of Butter Creek, on the valley flanks dark green chloritic andesite is common. It may have quartz and carbonate veining with minor epidote. Higher on the slopes north of Butler Creek and east of Horne Lake, outcropping of the Miocene Chilcotin Basalt is evident. The prominent hay meadow gently sloping from the ranch to the beaver ponds appears to be underlain by sequences of tills and gravels in excess of 100 m thick.


The section underlying claims to the east and north of the Bluff claims includes siltstones, greywackes, conglomerates and volcanic breccias and tuffs. Within this area, Upper Cretaceous to Tertiary diorite, quartz diorite, monzonite and quartz feldspar porphyry stocks and dykes have intruded the volcanic and sedimentary package. A thin layer of vesicular basalt, possibly representative of the Miocene aged Chilcotin plateau basalt, outcrops on the cliff top above Butler Lake and is likely the youngest unit within the project area. In and around Butler Lake and the upper reaches of Butler Creek, the volcanic and sedimentary rocks have been extensively hornfelsed.

The most common intrusive type in the Butler Lake area is quartz feldspar porphyry. Extensive sections of intrusive breccia (quartz-feldspar porphyry and diorite) have been intersected in drill holes on the east side of Butler Creek.

Pyrite, pyrrhotite, chalcopyrite, bornite and molybdenite (and occasionally arsenopyrite) have variably mineralized both the intrusive rocks and the hornfelsed volcanics and sediments. In the Cow Trail Vein area, gold and silver bearing quartz veins and quartz-sulphide stockworks have developed, possibly as distal features to the porphyry mineralization.

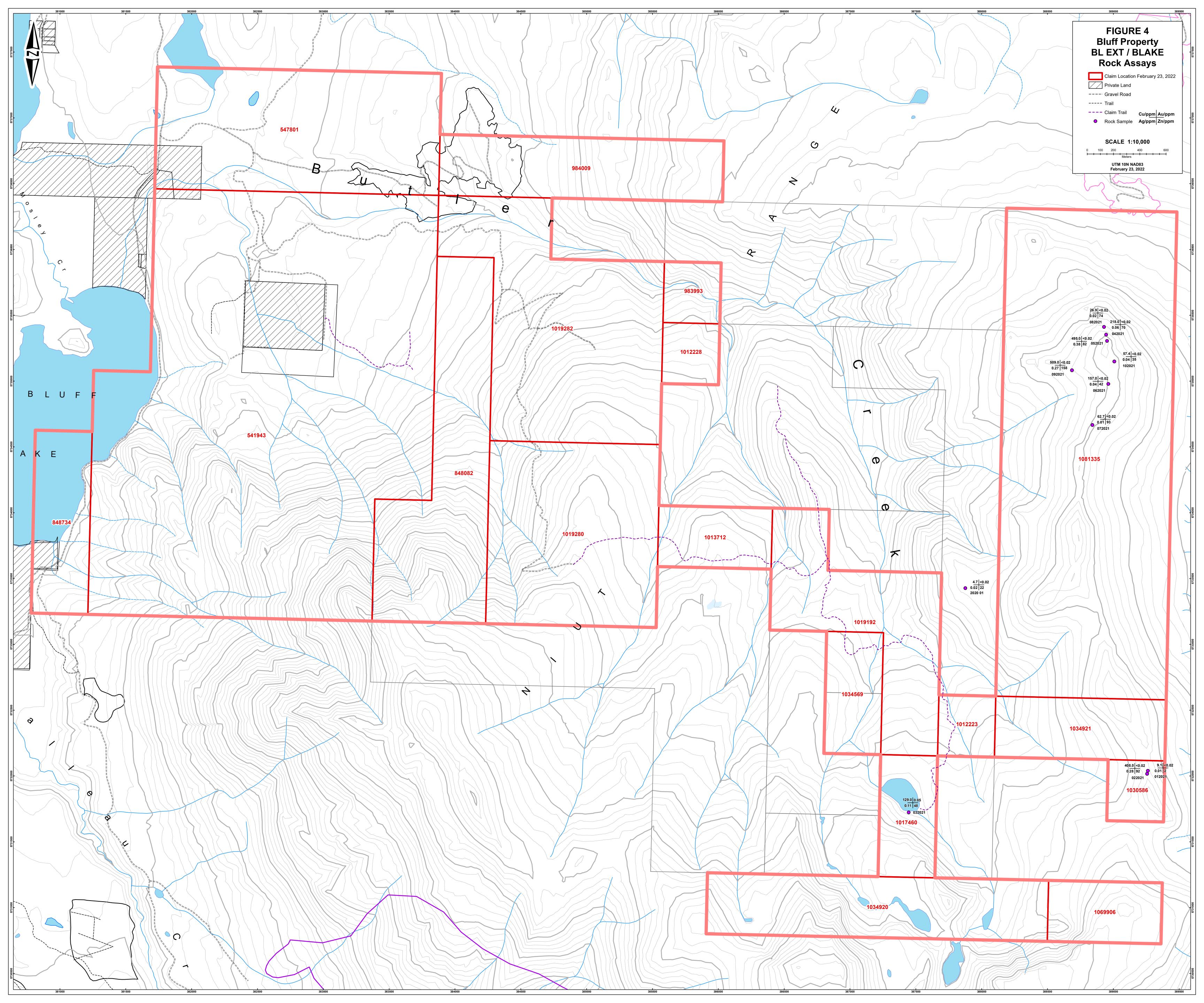
7.0 Work Program

This year's program was carried out by prospector Susan Rolston and Field Assistants Kendra Rolston and Brooke Rolston and Local Equipment Contractor Les Rolston. A total of 31 rocks were sampled all of which were sent for assay. A total of 20 pits were excavated, sampled and reclaimed. A total of 32 soil samples were taken and all were sent for assay.. Work was performed on the COW 1, COW2, BLAKE and BL EXT Claims.

7.1 Geochemical Rock Sampling

The 2021 rock geochemical program consisted of 11 rock grab samples taken by Susan Rolston and assistant Kendra Rolston on the BLAKE and BL EXT claims. On August 28 Susan Rolston and assistant Kendra Rolston traveled by ATV and spent 2 days prospecting the East ridge of the BL EXT claim and took samples 012021 and 022021. On August 29 they prospected the southern most ridge of the BL EXT claim and the southern slope on the BLAKE claim in the vicinity of Butler Lake and took sample 032021. On September 11 2021 Susan Rolston and assistant Kendra Rolston returned to the BL EXT claim by helicopter and prospected the Northern and Eastern ridges of BL EXT claim and collected samples 042021 through 072021. On September 24 2021, Susan Rolston and assistant Kendra Rolston returned by helicopter to the BL EXT claim and continued prospecting the Northern ridge and down the Western Ridge taking samples 082021-102021.

On October 8 2021 Susan Rolston and equipment operator Les Rolston began digging test pits along the mining road on the COW 1 claim where one float rock was taken from each pit, consisting of Samples 112021 – 202021. On October 8 and 10 the remainder of the samples, 212021 - 302021 were taken on claims COW 1 and COW 2 where one float rock was taken from each pit, concluding on pit 20. The remainder of the program will commence next field season.


All samples consisted of approximately 1.2 to 2.0kg of rock taken from outcrop or float. Stations were located using a Garmin 64S GPS. Samples were then described, numbered and bagged into standard poly ore bags and transported to the Rolston ranch. Samples were stored in a secure location at the ranch until they were transported by truck to Williams Lake then on to ALS Laboratories in Kamloops BC by commercial freight company on October 17 2021. Analyses were performed for 51 elements using industry standard ICP- Spectroscopy techniques, plus fire assay with atomic absorption finish for gold. See rock descriptions and selected assays in Tables 2 and 3 respectively and assay results represented in Figures 4 and 5. Assay certificates are contained in Appendix 1.

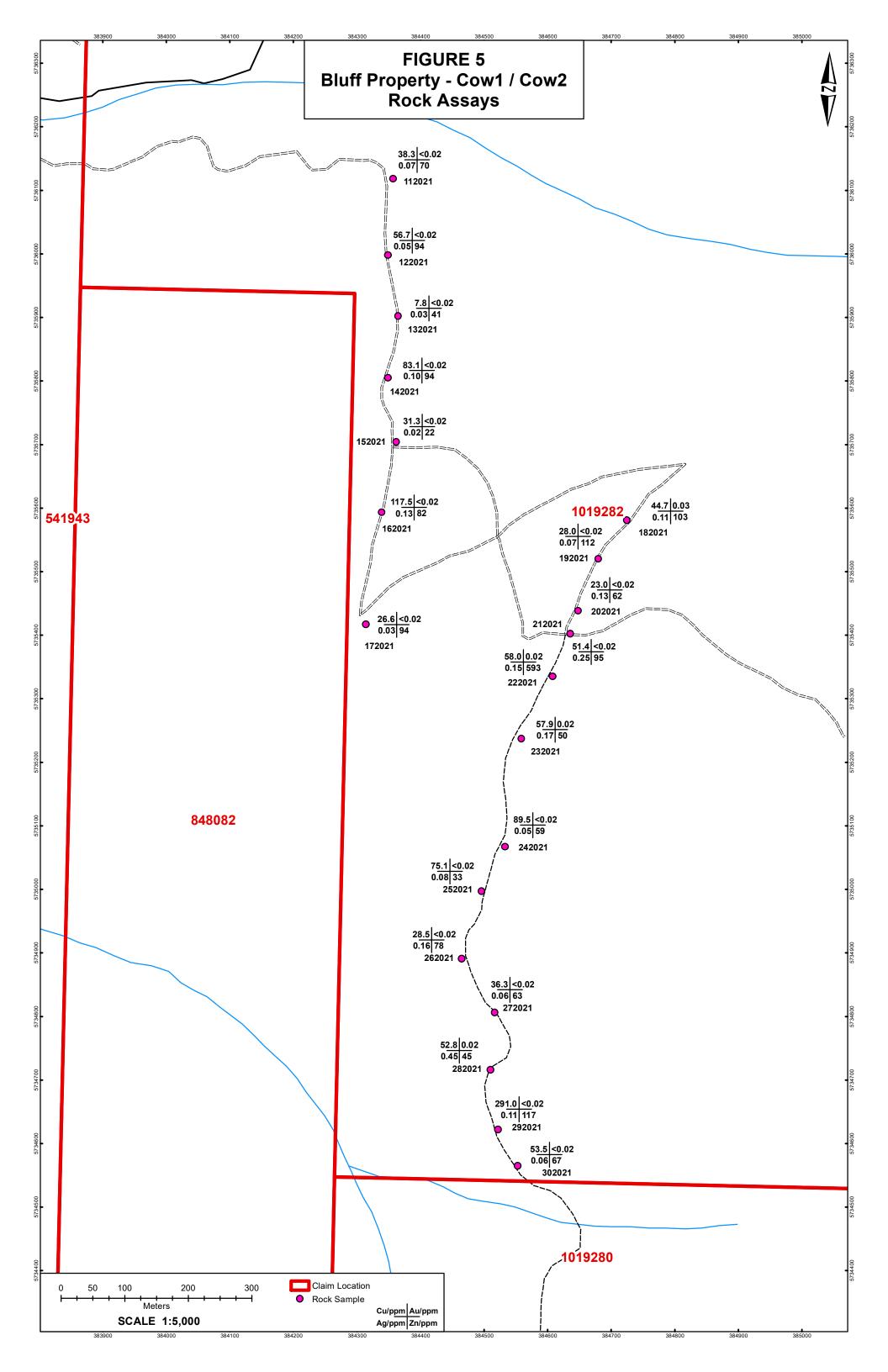

Sample No.	UTM Zone	UTM E	UTM N	Description				
2020 01	10U	387877	5733427	Outcrop - Light grey/green Andisite tuff				
012021	10U	389257	5732016	Outcrop -Possible potassic alteration faded to light pink with trace epidote				
022021	10U	389263	5732039	Outcrop - Epidote/chloride alteration with trace sulphide /malachite				
032021	10U	387447	5731723	Float/Pit- Dark rusty altered volcanics, highly iron oxidized 10% Fe				
042021	10U	388946	5735353	Outcrop - Dark fine grained volcanics with small calcite stringers				
052021	10U	388953	5735305	rop - Greenish, porphyritic, with oxidized fractures, trace calcopyrite				
062021	10U	388962	5734978	rop - Dark fine grained volcanics ,mildly magnetic				
072021	10U	388842	5734666	Outcrop - Dark fine grained volcanics with epidote/quartz veinlets throughout				
082021	10U	388930	5735411	Outcrop - Dark fine grained volcanics with calcite stringers , magnetic				
092021	10U	388686	5735082	Outcrop - Prophrytic alteration with blibs of biotite hornfelds, trace calcopyrite				
102021	10U	389008	5735149	Outcrop - Dark greenish fine grain volcanics with fractures of epidote/calcite, magnetic				
112021	10U	384531	5736112	Float/Pit - Dark greyish/green andisite, lightly magnetic				
122021	10U	384349	5735998	Float/Pit - Dark grey/green andisite				
132021	10U	384365	5735902	Float/Pit - Light bluish grey, fine grain, disiminated pyrite				
142021	10U	384349	5735805	oat/Pit - Dark volcanic fine grain, minimal veinlets, greywacke?				
152021	10U	384362	5735704	Float/Pit - Greyish andisite with iron oxide veinlets				
162021	10U	384339	5735593	Float/Pit - Greeenish medium grained with quartz veinlets with iron oxide staining				
172021	10U	384314	5735417	Float/Pit - Green/grey porphyritc,epidote/chloride alteration,iron oxidation on fractured surfaces				
182021	10U	384725	5735581	Float/Pit - Dark grey plagioclast, sericite on fracture face, minor iron oxidation				
192021	10U	384680	5735520	Float/Pit - Andisite with fractured surface, lightly oxidized with quartz stringers				
202021	10U	384648	5735438	Float/Pit - Orangish gossiness/oxidized, highly altered almost clay				
212021	10U	384636	5735402	Float/Pit - Tan,extreme alteration, gosseniss, crumbly				
222021	10U	384608	5735335	Float/Pit - Granodiorite with iron stain, clusters of fine pyrite				
232021	10U	384559	5735237	Float/Pit - Palish bluegrey fine grained, oxidation on fractured surface with minor pyrite				
242021	10U	384533	5735067	Float/Pit - Quartz porphyry,surface iron oxide with desiminated pyrite fine grain clusters				
252021	10U	384496	5734997	Float/Pit - Quartz porphyry,surface rustyorange oxidized fracture surface.				
262021	10U	384465	5734891	Float/Pit - Tan extremely altered, gosseness, clay like				
272021	10U	384517	5734806	Float/Pit - Tanish orange, silicifide, altered to clay, fractures easly				
282021	10U	384510	5734716	Float/Pit - Tan/orange argilic alteration with iron oxidation				
292021	10U	384522	5734622	Float/Pit - Dark fine grained volcanics,trace pyrite on fractured surfaces, oxidized				
302021	10U	384553	5734565	Float/Pit - Greenish porphyritic andisite with disiminated pyrite clusters				

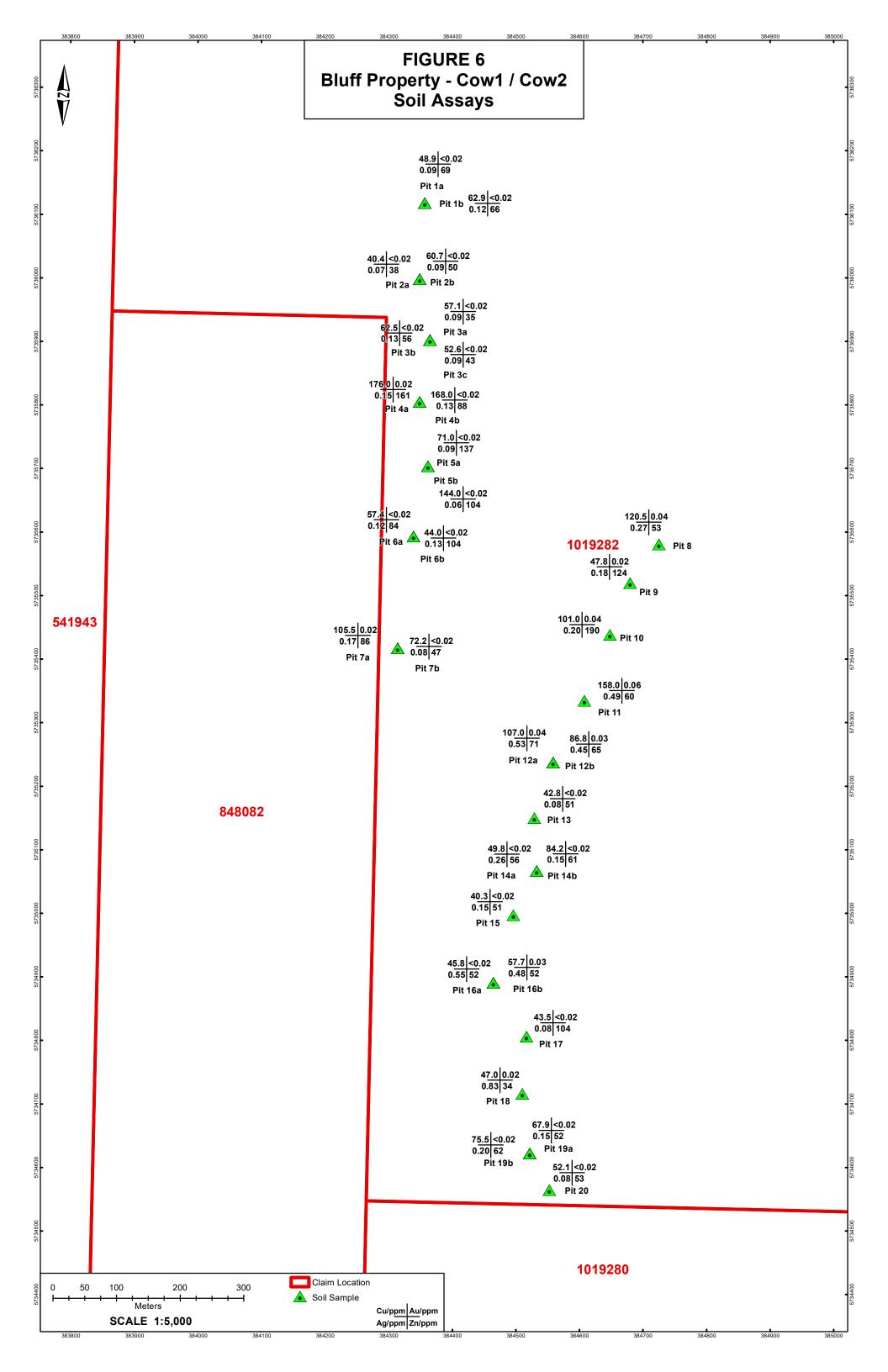
Table 2 - Rock Sample Descriptions

	Easting	Northing	Ag	As	Cu	Mn	Мо	Pb	Sb	Zn	Au
			ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
2020 01	387877	5733427	0.02	5	4.7	367	0.26	1.1	0.29	22	<0.02
012021	389257	5732016	0.01	4.1	9.1	144	0.12	0.9	0.31	2	<0.02
022021	389263	5732039	0.28	6	408	547	0.41	1	0.46	92	<0.02
032021	387447	5731723	0.11	16.4	129	1000	0.23	0.7	3.32	48	0.05
042021	388946	5735353	0.06	6.6	218	776	0.14	3	0.16	70	<0.02
052021	388953	5735305	0.38	8.2	495	818	0.21	6.3	0.51	82	<0.02
062021	388962	5734978	0.04	21.7	157	405	0.64	1.2	1.17	42	<0.02
072021	388842	5734666	0.01	19.5	62.7	938	0.33	1.4	0.42	93	<0.02
082021	388930	5735411	0.02	9.1	26.9	678	0.25	1.3	0.66	74	<0.02
092021	388686	5735082	0.27	7.8	509	493	0.18	4.8	0.62	158	0.03
102021	389008	5735149	0.04	7.9	57.4	516	0.14	0.9	0.11	35	<0.02
112021	384531	5736112	0.07	5.1	38.3	881	0.21	2	0.38	70	<0.02
122021	384349	5735998	0.05	2.4	56.7	908	0.61	1.7	0.24	94	<0.02
132021	384365	5735902	0.03	5.3	7.8	801	0.49	10.8	0.45	41	<0.02
142021	384349	5735805	0.1	16	83.1	1260	0.34	14.7	0.57	94	<0.02
152021	384362	5735704	0.02	2.5	31.3	295	0.29	0.8	0.88	22	<0.02
162021	384339	5735593	0.13	23.8	117.5	950	1.32	6.2	0.42	82	<0.02
172021	384314	5735417	0.03	4.5	26.6	1050	0.25	2.3	0.65	94	<0.02
182021	384725	5735581	0.11	62.1	44.7	1160	0.88	6.5	0.7	103	0.03
192021	384680	5735520	0.07	10.8	28	1320	0.46	3.2	0.56	112	<0.02
202021	384648	5735438	0.13	29.3	23	894	1.32	8.2	2.16	62	<0.02
212021	384636	5735402	0.25	49.9	51.4	631	1	14.1	13.35	95	<0.02
222021	384608	5735335	0.15	77.1	58	2370	5.62	12.6	0.99	593	0.02
232021	384559	5735237	0.17	61.4	57.9	566	14.1	9.5	0.71	50	0.02
242021	384533	5735067	0.05	2.3	89.5	724	0.14	1.8	0.26	59	<0.02
252021	384496	5734997	0.08	269	75.1	412	1.63	8.1	0.35	33	<0.02
262021	384465	5734891	0.16	23.4	28.5	881	0.39	8.3	0.45	78	<0.02
272021	384517	5734806	0.06	9.4	36.3	378	1.03	4.6	0.42	63	<0.02
282021	384510	5734716	0.45	16.3	52.8	433	0.35	39.6	0.41	45	0.02
292021	384522	5734622	0.11	18.6	291	1250	0.56	2	0.68	117	<0.02
302021	384553	5734565	0.06	9.9	53.5	726	0.74	2.3	0.54	67	<0.02

Table 3 - Rock Geochemistry Assays

7.2 Geochemical Soil Sampling

Between October 6 2021 and October 9 2021 prospector Susan Rolston and heavy equipment contractor Les Rolston began excavating 20 of the permitted 30 test pits with a John Deere 225 DLC excavator with a 122cm dig bucket, taking soil samples from various depths, not exceeding 2 meters in each pit. Each pit was dug, sampled and reclaimed before moving on to the next pit location.


Pit locations were located using a Garmin 64S GPS, assigned location ID's and soil samples consisting of approximately 500 grams were then taken, described and bagged into standard Kraft paper soil bags and transported to the Rolston ranch. Samples were then transported by truck to Williams Lake and sent to ALS Laboratories in Kamloops BC by a commercial carrier. Analyses were performed for 51 elements using industry standard ICP- atomic emission spectroscopy and mass spectrometry techniques, plus ICP - mass spectrometry and atomic absorption finish for gold. See soil sample descriptions and selected assays in Table 4 and 5 respectively and assay results represented in Figure 6. Analytical techniques and results are attached in Appendix 1

Pit #	Easting	Northing	Depth	Description
1a	384351	5735112	4ft	Light brown course sandy texture
1b	384351	5735112	8ft	Light brown course sandy/ small pebbles
2a	384349	5735998	3ft	Light brown clay like various size rounded rocks
2b	384349	5735998	7ft	Light brown course sandy texture 5 to 6 " intrusive rocks
3a	384365	5735902	3ft	Light brown mixture of sandy material with dirt
3b	384365	5735902	4ft	Light Brown, magnetic sandy course grain
3c	384365	5735902	7ft	Light brown, magnetic sandy course grain
4a	384349	5735805	4ft	Light reddish brown course sandy texture
4b	384349	5735805	6ft	Darker reddish brown clumpy /Magnetic/ course grained material
5a	384362	5735704	3ft	Light reddish brown course sandy texture
5b	384362	5735704	7ft	Light brown sand/dirt mix
6a	384339	5735593	3ft	Reddish brown sand/dirt mix
6b	384339	5735593	7ft	Light reddish brown course sandy texture
7a	384314	5735417	3ft	Light reddish brown dirt w/course sandy texture
7b	384314	5735417	7ft	Light reddish brown dirt/sand mix with course graines
8	384725	5735581	3ft	Medium red brown course grained sand/dirt mix
9	384680	5735520	4ft	Reddish iron colored course grained
10	384648	5735438	4ft	Reddish iron colored course grained
11	384608	5735335	5ft	Light Brown mixed with darker reddish course texture soil
12a	384559	5735237	3ft	Light brown sandy material
12b	384559	5735237	5ft	Light brown with dark reddish course/sandy layers
13	384529	5735150	4ft	Light tan fine grained soil rolly polly rocks very boney
14a	384533	5735067	4ft	Light brown clay clumps verious small rocks
14b	384533	5735067	6ft	Light brown courser sandy texture soil
15	384496	5734997	4ft	Light brownish red small fine grain soil minimal large rocks
16a	384465	5734891	3ft	Reddish brown course semi compact clumps of small rock
16b	384465	5734891	5ft	Reddish clay clumps w/white tinges of courser clay
17	384517	5734806	5ft	Light brown sandy material minimal larger rocks
18	384510	5734716	7ft	Light brown clumps of whitish clay material
19a	384522	5734622	4ft	Reddish clay like material with fine and course grain material mixed
19b	384522	5734622	6ft	Reddish fine grained material
20	384553	5734565	3ft	Light brown fine grained material

 Table 4 - Pit Locations and Soil Sample Locations and Descriptions

	Easting	Northing	Ag	As	Cu	Mn	Мо	Pb	Sb	Zn	Au
Pit 1a	384351	5735112	0.09	6.8	48.9	322	1.13	3.8	0.41	69	<0.02
Pit 1b	384351	5735112	0.12	9.9	62.9	633	1.16	5.2	0.46	66	<0.02
Pit 2a	384349	5735998	0.07	12.1	40.4	361	1.42	4.3	0.48	38	<0.02
Pit 2b	384349	5735998	0.09	11.5	60.7	465	0.72	4.3	0.44	50	<0.02
Pit 3a	384365	5735902	0.09	9.9	57.1	330	1.03	3.8	0.41	35	<0.02
Pit 3b	384365	5735902	0.13	9.1	62.5	362	0.72	3.4	0.33	56	<0.02
Pit 3c	384365	5735902	0.09	9	52.6	371	0.74	3.5	0.36	43	<0.02
Pit 4a	384349	5735805	0.15	48.7	176	722	2.11	14.3	0.83	161	0.02
Pit 4b	384349	5735805	0.13	16.6	168	474	1.05	5.5	0.4	88	<0.02
Pit 5a	384362	5735704	0.09	24.4	71	436	1.68	9.3	0.56	137	<0.02
Pit 5b	384362	5735704	0.06	23.1	144	436	1.76	8.2	0.43	104	<0.02
Pit 6a	384339	5735593	0.12	20.9	57.4	420	1.72	7.8	0.45	84	<0.02
Pit 6b	384339	5735593	0.13	19.6	44	416	1.51	7.3	0.43	104	<0.02
Pit 7a	384314	5735417	0.17	35.4	105.5	717	2.99	14.7	0.93	86	0.02
Pit 7b	384314	5735417	0.08	12.3	72.2	580	0.91	6.1	0.48	47	<0.02
Pit 8	384725	5735581	0.27	48.9	120.5	401	3.33	21	1.42	53	0.04
Pit 9	384680	5735520	0.18	37.5	47.8	481	2.99	20.7	2.23	124	0.02
Pit 10	384648	5735438	0.2	87	101	722	6.52	21.3	12.6	190	0.04
Pit 11	384608	5735335	0.49	53.6	158	372	8.59	25.4	1.33	60	0.06
Pit 12a	384559	5735237	0.53	42	107	520	4.52	17.9	2.26	71	0.04
Pit 12b	384559	5735237	0.45	36.3	86.8	515	4.67	17.8	2.28	65	0.03
Pit 13	384529	5735150	0.08	22.7	42.8	352	2.33	8	0.83	51	<0.02
Pit 14a	384533	5735067	0.26	17.8	49.8	408	1.39	5.8	0.57	56	<0.02
Pit 14b	384533	5735067	0.15	19.4	84.2	625	1.49	6.5	0.6	61	<0.02
Pit 15	384496	5734997	0.15	20.8	40.3	385	1.14	5.6	0.51	51	<0.02
Pit 16a	384465	5734891	0.55	29.1	45.8	282	1.61	17.7	0.77	52	<0.02
Pit 16b	384465	5734891	0.48	42.9	57.7	251	2.81	26.1	1.08	52	0.03
Pit 17	384517	5734806	0.08	26.6	43.5	367	1.82	6.6	1.21	104	<0.02
Pit 18	384510	5734716	0.83	28.8	47	165	1.23	42.5	0.95	34	0.02
Pit 19a	384522	5734622	0.15	83.3	67.9	321	2.35	12	1.37	52	<0.02
Pit 19b	384522	5734622	0.2	71	75.5	378	2.35	11.5	1.25	62	<0.02
Pit 20	384553	5734565	0.08	25.2	52.1	416	1.23	11.9	0.61	53	<0.02

Table 5 - Soil Geochemistry

8.0 Discussion and Interpretation

This year's program comprised of rock geochemical sampling on the BL EXT, BLAKE, COW 1 and COW2 claims. A total of 30 rocks were sampled, all of which were sent for assay.

A total 20 of the 30 permitted test pits were excavated, soil samples were taken, pits were reclaimed and soil samples were sent for assay.

Of the total of 11 rock outcrop samples taken on the BL EXT claim, 7 samples returned anomalous in Cu. Of the 20 rock samples taken from the test pits 1 was anomalous in Cu. Of the total of 32 soil samples taken from the 20 test pits, 8 were anomalous in Cu.

Continued exploration on the BL EXT claim is recommended to determine whether the mineralization found in rock samples 022021,042021,052021,062021 are a continuation of the mineralized zone where the Math showing is located approximately 3.5 km to the south. The entirety of the eastern ridge paralleling the right confluence of Butler Creek appears to have similarities with the eastern boundary of BL EXT where the above samples were taken.

The remainder 10 test pits will be excavated and sampled in the same manner as the previous 20 pits, in the upcoming field season.

9.0 Statement of Costs

Item	Rate		2021 apr	2021 June	2021 July	2021 Aug				2021 Sept		2021 Oct									Total
Manpower			22	5	15	28	29	30	31	11	24	6	8	10	11	12	14	17	total days/hours		
Susan Rolston (Prospector)	\$450.00	per day	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	16.00	days	\$7,200.00
Kendra Rolston Field Assistant)	\$350.00	per day				1.00	1.00	1.00	1.00	1.00	1.00							1.00	7.00	days	\$2,450.00
Brooke Rolston (Field Assistant)	\$350.00	per day		1.00	1.00														2.00	days	\$700.00
Susan Rolston (Travel)	\$30.00	per hr																3.00	3.00	hrs	\$90.00
Rentals																					+
Ranger	\$275.00	per day	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00				11.00	days	\$3,025.00
GPS	\$50.00	per day	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				13.00)	\$650.00
Sat Ph	\$50.00	per day	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	14.00)	\$700.00
Radio	\$50.00	per day	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	14.00	days	\$700.00
Fuel	\$1.75	per litre													480.00				480.00	litres	\$840.00
Power Saw	\$75.00	per day		1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00				10.00)	\$750.00
Sundries	\$37.06	per day																1.00	1.00	days	\$37.06
Truck	\$100.00	per day	2.00	2.00	2.00	2.00			1.00	2.00	2.00	1.00			1.00			1.00	16.00)	\$1,600.00
Food & Accom	\$250.00	per day	1.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	1.00		27.00	days	\$6,750.00
Mapping		per season																	\$1,680.94	1	\$1,680.94
																					+-
Equipment (Hired)																					
Helicopter	\$2,612.25	per Hr								\$0.20	\$0.40								\$0.60)	\$1,567.35
Excavator w/op	\$1,800.00	per day										1.00	1.00	1.00	1.00				4.00)	\$7,200.00
Geochem																					
Soil Sample Analysis	\$36.12	per sample																	32.00	samples	\$1,155.84
Rock sample Analysis	\$43.98	per sample																	31.00	samples	\$1,363.38
Freight delivery & return	1.00	per cost																			\$252.26
																			Total		\$38,711.83

10.0 Statements of Qualifications

I, Susan E Rolston, do hereby certify that

- 1.) I currently reside at 6705 Bluff Lake Road, Tatla Lake, BC, V0L 1V0.
- 2.) I have been working as a prospector and sampler for 16 years, primarily on my own mineral tenures.
- 3.) I have worked for several companies in the mining and mineral exploration industry since 2005 as a prospector, sampler, core splitter, OHS Level 3 First Aid Attendant, cook and camp manager.
- 4.) I completed the online "Mine 1003" course on Mining and Prospecting through the British Columbia Institute of Technology.
- 5.) I am 100% Owner of Tchaikazan Resources Inc., a private exploration company.
- 6.) I performed and supervised the work described in this report.

Signed at Tatla Lake, British Columbia, March 1 2022

Susem Latsto

Susan E. Rolston

11.0 Bibliography

- Beane, R.E. & Titley, S.R. (1981) Porphyry Copper Deposits Part 11, Hydrothermal Alteration and Mineralization; In 75th Anniversary Volume, Economic Geology, pp 235-269.
- Cox, D.P. & Singer, D.A. (1988): Distribution In Porphyry Copper Deposits: U. S. Geological Survey, Open File Report 88-46, 23 pages.
- Fraser, John, (1972): Report on the Butler Creek Property, for Noranda Exploration Company Limited. 92N/10E.
- Gill, D.G. & Wong, T., (1991) Geological, Geophysical and Geochemical Report on the Newmac and Newmac east group claims, 92N/10 and /15E, January 1991.
- Heim, R.C., Fraser, J.R., Walker, J.T., & Knauer, J.D. (1972): Geological, Geophysical Geochemical Report on B.U. 1, 3-7, 1926, 74,76, & 78 Claims.
- Howell, W.A., (2006): Assessment Report No. 28547, 2005 Diamond Drilling Report on the Newmac Copper-Gold-Molybdenum Property, dated September 26, 2006.
- Howell, W.A., (2008): Assessment Report No. 29526, 2007 Diamond Drilling Report on the Bluff Property, dated January 14, 2008.
- Israel, S., Kennedy, L.A., (2000): Geology and Mineralization of the Tchaikazan River Area, South Western British Columbia (920/4). Geological Field Work 1999, Paper 2000-1, pp 157-172.
- Lowell, J.D., Guilbert, J.M.(1970): Lateral and Vertical Alteration/Mineralization Zoning In Porphyry Ore Deposits; Economic Geology, Vol.65, pp 373-408.
- MacDonald, R.C. (2012): Assessment Report for the May 2012 Rock Geochemistry Program, Bluff Property, Clinton Mining Division, January 23, 2013
- MacDonald, R.C. (2013): Assessment Report on the Rock Geochemistry Program on the Bluff Property, February 23, 2013
- MacDonald, R.C. (2013): Assessment Report on the Rock Geochemistry Program on the Bluff Property, November 18, 2013
- MacDonald, R.C. (2014): Assessment Report on the Rock and Soil Geochemistry Program on the Bluff Property, November 19, 2014
- McLaren, G.P. (1986): Geological Fieldwork, 1985, Paper 1986-1, Geology and mineral Potential of the Chilko-Taseko Lakes area (92 0/45; 92 J/13;92 0/4).

- McLaren, G.P. (1987): Geological Fieldwork, 1986, Paper 1987-1, Geology and Mineral Potential of the Chilko-Taseko Lakes area (92 N/14); (92 0/4).
- Morton, J.W. (1984): Assessment Report No. 12422, Geochemical Report on the Mac Claim Group, July 12, 1984.
- Morton, J.W. (1985): Assessment Report No.13780, Geological and Geochemical Report On the Mac Claim Group, May, 1985.
- Morton, J.W. (2004): Assessment Report No. 27543 on the Newmac Mineral Claims, November 5th, 2004.
- Price, B.J. (2004): Technical Report on the Newmac Copper, Gold , Molybdenum Porphyry Property, October 5, 2004
- Roddick, J.A. & Tipper, H.W. (1985): GSC Open File Map 1163, Geology Mt Waddington Map Area (92N).
- Schroeter, T.G. Editor (1995): Porphyry Copper Deposits of the Northwestern Cordillera Of North America; Canadian Institute of Mining and Metallurgy and Petroleum Special Volume 46, 888 pages.
- Sutherland, Brown, A., Editor (1976): Porophyry deposits of the Canadian Cordillera Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.
- Tipper, H.W. (1969): GSC Paper 68-33 and Map 5-1968, Mesozoic and Cenozoic Geology of the Northeast part of Mt. Waddington Map area, (92N) Coast District 1969.
- Tilley, S.R. & Beane, R.E. (1981): Porphyry Copper Deposits Part 1. Geologic Settings Petrology and Tectogenesis, In 75th Anniversary Volume, Economic Geology, Pp 214-234.
- Thompson, J.F.H., Editor: Magmas, Fluids, and Ore Deposits; MDRU Short Course Series, Volume 23, Mineralogical Assn. of Canada.

Appendix I – Rock & Soil Geochemistry Assays

GEOCHEMICAL PROCEDURE

ME- MS41

ULTRA-TRACE LEVEL METHODS USING ICP- MS AND ICP- AES

SAMPLE DECOMPOSITION

Aqua Regia Digestion (GEO-AR01)

ANALYTICAL METHOD

Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.50 g) is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, ment spectral interferences.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver	Ag	ppm	0.01	100
Aluminum	Al	%	0.01	25
Arsenic	As	ppm	0.1	10 000
Gold	Au	ppm	0.2	25
Boron	В	ppm	10	10 000
Barium	Ва	ppm	10	10 000
Beryllium	Be	ppm	0.05	1 000
Bismuth	Bi	ppm	0.01	10 000
Calcium	Ca	%	0.01	25
Cadmium	Cd	ppm	0.01	1 000
Cerium	Ce	ppm	0.02	500
Cobalt	Со	ppm	0.1	10 000
Chromium	Cr	ppm	1	10 000
Cesium	Cs	ppm	0.05	500
Copper	Cu	ppm	0.2	10 000
Iron	Fe	%	0.01	50
Gallium	Ga	ppm	0.05	10 000
Germanium	Ge	ppm	0.05	500
Hafnium	Hf	ppm	0.02	500

ME- MS41

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Mercury	Нд	ppm	0.01	10 000	
Indium	In	ppm	0.005	500	
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	0.2	10 000	
Lithium	Li	ppm	0.1	10 000	
Magnesium	Mg	%	0.01	25	
Manganese	Mn	ppm	5	50 000	
Molybdenum	Mo	ppm	0.05	10 000	
Sodium	Na	%	0.01	10	
Niobium	Nb	ppm	0.05	500	
Nickel	Ni	ppm	0.2	10 000	
Phosphorus	Р	ppm	10	10 000	
Lead	Pb	ppm	0.2	10 000	
Rubidium	Rb	ppm	0.1	10 000	
Rhenium	Re	ppm	0.001	50	
Sulphur	S	%	0.01	10	
Antimony	Sb	ppm	0.05	10 000	
Scandium	Sc	ppm	0.1	10 000	
Selenium	Se	ppm	0.2	1 000	
Tin	Sn	ppm	0.2	500	
Strontium	Sr	ppm	0.2	10 000	
Tantalum	Ta	ppm	0.01	500	
Tellurium	Te	ppm	0.01	500	
Thorium	Th	ppm	0.2	10000	
Titanium	Ti	%	0.005	10	
Thallium	TI	ppm	0.02	10 000	
Uranium	U	ppm	0.05	10 000	
Vanadium	V	ppm	1	10 000	
Tungsten	W	ppm	0.05	10 000	
Yttrium	Y	ppm	0.05	500	
Zinc	Zn	ppm	2	10 000	
Zirconium	Zr	ppm	0.5	500	

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

GEOCHEMICAL PROCEDURE

ME-MS41

ULTRA-TRACE LEVEL METHODS USING ICP- MS AND ICP- AES

SAMPLE DECOMPOSITION

Aqua Regia Digestion (GEO-AR01)

ANALYTICAL METHOD

Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.50 g) is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, ment spectral interferences.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver	Ag	ppm	0.01	100
Aluminum	Al	0/0	0.01	25
Arsenic	As	ppm	0.1	10 000
Gold	Au	ppm	0.2	25
Boron	В	ppm	10	10 000
Barium	Ва	ppm	10	10 000
Beryllium	Be	ppm	0.05	1 000
Bismuth	Bi	ppm	0.01	10 000
Calcium	Ca	%	0.01	25
Cadmium	Cd	ppm	0.01	1 000
Cerium	Се	ppm	0.02	500
Cobalt	Со	ppm	0.1	10 000
Chromium	Cr	ppm	1	10 000
Cesium	Cs	ppm	0.05	500
Copper	Cu	ppm	0.2	10 000
Iron	Fe	%	0.01	50
Gallium	Ga	ppm	0.05	10 000
Germanium	Ge	ppm	0.05	500
Hafnium	Hf	ppm	0.02	500

ME- MS41

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Mercury	Hg	ppm	0.01	10 000	
Indium	In	ppm	0.005	500	
Potassium	К	%	0.01	10	
Lanthanum	La	ppm	0.2	10 000	
Lithium	Li	ppm	0.1	10 000	
Magnesium	Mg	%	0.01	25	
Manganese	Mn	ppm	5	50 000	
Molybdenum	Мо	ppm	0.05	10 000	
Sodium	Na	0/0	0.01	10	
Niobium	Nb	ppm	0.05	500	
Nickel	Ni	ppm	0.2	10 000	
Phosphorus	P	ppm	10	10 000	
Lead	Pb	ppm	0.2	10 000	
Rubidium	Rb	ppm	0.1	10 000	
Rhenium	Re	ppm	0.001	50	
Sulphur	S	%	0.01	10	
Antimony	Sb	ppm	0.05	10 000	
Scandium	Sc	ppm	0.1	10 000	
Selenium	Se	ppm	0.2	1 000	
Tin	Sn	ppm	0.2	500	
Strontium	Sr .	ppm	0.2	10 000	
Tantalum	Та	ppm	0.01	500	
Tellurium	Те	ppm	0.01	500	
Thorium	Th	ppm	0.2	10000	
Titanium	Ti	%	0.005	10	
Thallium	TI	ppm	0.02	10 000	
Uranium	U	ppm	0.05	10 000	
Vanadium	V	ppm	1	10 000	
Tungsten	W	ppm	0.05	10 000	
Yttrium	Υ	ppm	0.05	500	
Zinc	Zn	ppm	2	10 000	
Zirconium	Zr	ppm	0.5	500	

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-NOV-2021

This copy reported on 30-NOV-2021

Account: TCHRES

CERTIFICATE KL21282842

Project: Bluff Property									
on 19-OCT-2021.	of Rock submitted to our lab in	. , ,							
The following have access	to data associated with this	certificate:							
SUE ROLSTON SUSAN ROLSTON	SUSAN ROLSTON	SUE ROLSTON							

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
CRU-QC	Crushing QC Test							
PUL-QC Pulverizing QC Test								
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% < 2mm							
SPL-21 Split sample - riffle splitter								
PUL-31	Pulverize up to 250g 85% <75 um							

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT						
ME-MS41 Ultra Trace Aqua Regia ICP-MS								

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0

CERTIFICATE OF ANALYSIS

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 29-NOV-2021

KL21282842

Account: TCHRES

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05
2020.01		2.42	0.02	0.82	5.0	<0.02	<10	40	0.15	0.06	0.93	0.08	7.29	3.5	9	0.87
2020 01 012021		1.93	0.02	0.62	4.1	<0.02	<10	20	0.08	0.04	0.84	0.04	13.50	0.5	7	< 0.05
022021		2.16	0.28	1.65	6.0	<0.02	<10	10	0.15	0.05	1.70	0.10	4.50	19.5	20	0.05
032021		2.20	0.20	3.02	16.4	0.05	<10	10	0.26	2.18	2.10	0.01	1.52	16.8	199	< 0.05
042021		2.16	0.06	2.61	6.6	<0.02	10	20	0.35	0.01	2.29	0.23	7.05	15.6	5	0.12
052021		2.22	0.38	2.52	8.2	<0.02	10	40	0.27	0.04	1.87	0.48	6.93	17.3	4	0.32
062021		2.29	0.04	1.81	21.7	< 0.02	10	10	0.28	0.02	2.13	0.08	7.15	23.8	5	< 0.05
072021		3.12	0.01	3.10	19.5	< 0.02	10	30	0.28	0.02	2.11	0.12	6.68	21.3	6	0.10
082021		2.01	0.02	2.31	9.1	< 0.02	10	30	0.36	0.02	2.35	0.18	7.24	13.6	22	0.18
092021		3.09	0.27	1.37	7.8	0.03	<10	20	0.18	0.04	0.81	0.15	5.19	9.9	23	0.24
102021		2.33	0.04	2.85	7.9	<0.02	10	70	0.21	0.01	1.93	0.10	4.84	19.8	168	0.79
112021		2.27	0.07	2.83	5.1	< 0.02	<10	120	0.25	0.01	2.68	0.12	11.85	16.8	35	1.36
122021		2.35	0.05	2.20	2.4	< 0.02	<10	30	0.20	0.01	1.98	0.06	9.60	15.8	7	0.87
132021		1.88	0.03	0.89	5.3	< 0.02	<10	120	0.34	0.06	1.38	0.26	8.83	3.7	8	0.51
142021		1.96	0.10	7.37	16.0	< 0.02	<10	120	0.22	0.02	4.74	0.10	6.59	31.5	23	0.62
152021	cara	2.62	0.02	0.59	2.5	<0.02	<10	40	0.07	0.04	0.72	0.04	4.38	3.9	6	0.08
162021		1.68	0.13	2.36	23.8	< 0.02	<10	70	0.22	0.04	1.27	0.18	6.71	15.2	15	0.33
172021		2.04	0.03	2.43	4.5	< 0.02	10	50	0.19	0.01	1.30	0.13	7.50	16.4	11	0.36
182021		2.86	0.11	2.48	62.1	0.03	<10	70	0.10	0.18	0.63	0.23	4.15	19.1	41	0.20
192021		2.12	0.07	2.81	10.8	< 0.02	10	80	0.14	0.01	1.38	0.19	7.78	15.4	2	0.57
202021		2.03	0.13	2.36	29.3	<0.02	<10	40	0.22	1.04	0.09	0.03	5.99	12.8	44	0.90
212021		1.98	0.25	1.87	49.9	< 0.02	<10	50	0.22	0.97	0.19	0.19	11.95	4.8	37	0.58
222021		2.47	0.15	2.96	77.1	0.02	<10	80	0.15	0.05	0.77	7.27	3.91	16.1	44	0.37
232021		2.13	0.17	2.19	61.4	0.02	<10	70	0.22	0.33	1.03	0.12	7.14	16.0	22	0.41
242021		2.96	0.05	3.18	2.3	<0.02	<10	30	0.16	0.01	1.41	0.08	4.41	19.3	22	0.45
252021		2.81	0.08	3.75	269	<0.02	<10	30	0.25	1.75	1.68	0.11	3.75	14.3	22	0.96
262021		2.31	0.16	3.90	23.4	< 0.02	<10	50	0.14	0.42	0.46	0.05	3.36	1.7	35	0.32
272021		1.98	0.06	1.54	9.4	< 0.02	<10	60	0.20	0.12	0.15	0.03	10.15	5.7	41 18	1.32 0.57
282021		2.30	0.45	1.14	16.3	0.02	<10	100	0.10	0.76	0.03	0.04 0.25	1.42 12.40	1.9 25.5	2	0.37
292021		2.53	0.11	3.44	18.6	<0.02	10	180	0.32	0.02	1.61			(2012)0000		
302021		1.62	0.06	3.02	9.9	< 0.02	10	50	0.42	0.01	2.25	0.12	7.10	14.3	33	0.15
Î																

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0 Page: 2 - B
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 29-NOV-2021

Account: TCHRES

(ALS	,								CERTIFICATE OF ANALYSIS KL21282842							
Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41							
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01	0.05
2020 01		4.7	1.66	2.67	<0.05	0.14	0.04	0.014	0.17	3.1	4.5	0.27	367	0.26	0.09	0.09
012021		9.1	0.55	1.88	0.09	0.40	1.19	<0.005	0.06	6.0	0.2	0.02	144	0.12	0.10	1.29
022021		408	3.78	5.37	0.19	0.38	0.04	0.019	<0.01	1.6	3.4	0.81	547	0.41	0.02	0.12
032021		129.0	10.50	5.49	0.28	0.51	0.09	0.260	0.12	0.4	8.0	1.44	1000	0.23	0.13	<0.05
042021		218	5.96	9.40	0.18	0.19	0.02	0.020	0.02	2.4	8.7	1.26	776	0.14	0.06	<0.05
052021		495	4.72	10.70	0.12	0.15	0.11	0.021	0.11	2.5	11.2	1.28	818	0.21	0.04	0.05
062021		157.0	3.18	9.13	0.22	0.30	0.01	0.013	<0.01	2.9	4.4	0.78	405	0.64	0.02	0.14
072021		62.7	6.45	9.58	0.24	0.20	0.01	0.026	0.01	2.5	12.8	1.95	938	0.33	0.04	<0.05
082021		26.9	4.31	10.10	0.17	0.25	0.04	0.025	0.03	2.5	8.7	1.22	678	0.25	0.07	0.06
092021		509	3.47	6.63	0.09	0.14	0.41	0.028	0.06	1.9	7.5	0.84	493	0.18	0.05	0.12
102021		57.4	4.81	7.59	0.05	0.08	0.03	0.011	0.14	2.2	11.5	1.38	516	0.14	0.20	<0.05
112021		38.3	4.11	8.68	0.06	0.49	<0.01	0.019	0.19	4.8	36.0	1.90	881	0.21	0.10	0.05
122021		56.7	4.04	7.20	0.05	0.34	<0.01	0.013	0.15	3.6	16.3	1.42	908	0.61	0.04	0.07
132021		7.8	1.40	2.82	<0.05	0.10	<0.01	0.007	0.25	4.1	5.2	0.33	801	0.49	0.06	0.08
142021		83.1	6.55	14.90	0.16	0.46	0.01	0.046	0.02	2.5	55.0	3.07	1260	0.34	0.50	<0.05
152021		31.3	2.16	3.50	0.12	0.12	<0.01	0.013	0.06	1.5	3.1	0.27	295	0.29	0.08	0.31
162021		117.5	3.72	6.50	0.07	0.18	0.01	0.020	0.09	2.5	12.2	1.31	950	1.32	0.07	0.07
172021		26.6	3.80	7.57	0.07	0.55	<0.01	0.016	0.15	2.8	17.8	1.56	1050	0.25	0.07	0.09
182021		44.7	4.26	7.54	0.09	0.07	0.09	0.016	0.03	1.5	21.3	2.34	1160	0.88	0.10	<0.05
192021		28.0	4.13	8.03	0.07	0.36	<0.01	0.011	0.12	2.8	17.7	1.63	1320	0.46	0.11	0.08
202021		23.0	5.75	6.45	0.05	0.02	1.08	0.008	0.18	2.4	27.6	2.36	894	1.32	0.04	<0.05
212021		51.4	3.94	5.44	<0.05	<0.02	1.64	0.079	0.13	5.6	11.0	1.63	631	1.00	0.02	<0.05
222021		58.0	4.53	7.28	0.05	0.12	0.10	0.033	0.06	1.6	20.8	2.27	2370	5.62	0.13	0.07
232021		57.9	2.97	5.97	0.06	0.11	0.01	0.012	0.14	2.8	8.0	0.80	566	14.10	0.19	0.22
242021		89.5	4.50	9.33	0.07	0.08	0.01	0.024	0.09	1.8	14.0	1.76	724	0.14	0.13	0.05
252021		75.1	5.36	9.85	0.11	0.12	0.01	0.035	0.09	1.2	12.0	1.88	412	1.63	0.29	0.10
262021		28.5	6.32	11.35	0.05	0.11	0.03	0.034	0.15	2.0	28.1	2.59	881	0.39	0.04	0.12
272021		36.3	4.26	6.16	<0.05	0.17	0.05	0.019	0.16	5.3	12.8	1.09	378	1.03	0.07	0.11
282021		52.8	4.10	4.30	<0.05	0.17	0.02	0.041	0.20	0.9	8.5	0.69	433	0.35	0.01	0.10
292021		291	6.12	11.85	0.05	0.87	0.01	0.028	0.11	4.2	19.8	1.67	1250	0.56	0.10	0.06
302021		53.5	3.55	8.06	0.07	0.39	<0.01	0.017	0.10	2.9	10.7	1.46	726	0.74	0.08	0.08

To: TCHAIKAZAN RESOURCES INC. **BOX 32** TATLA LAKE BC VOL 1V0

CERTIFICATE OF ANALYSIS

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-NOV-2021

KL21282842

Account: TCHRES

	Method Analyte	ME-MS41 Ni	ME-MS41 P	ME-MS41 Pb	ME-MS41 Rb	ME-MS41 Re	ME-MS41 S %	ME-MS41 Sb	ME-MS41 Sc	ME-MS41 Se	ME-MS41 Sn ppm	ME-MS41 Sr ppm	ME-MS41 Ta ppm	ME-MS41 Te	ME-MS41 Th	ME-MS41 Ti %
Sample Description	Units LOD	ppm 0.2	ppm 10	ppm 0.2	ppm 0.1	ppm 0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2	0.005
2020 01		2.1	250	1.1	3.8	<0.001	<0.01	0.29	2.8	<0.2	0.3	20.2	<0.01	0.02	0.2	0.050
012021		0.7	40	0.9	0.7	<0.001	<0.01	0.31	0.9	<0.2	0.3	58.4	<0.01	<0.01	3.0	0.051
022021		10.5	500	1.0	0.1	<0.001	0.01	0.46	6.3	0.2	0.4	159.5	<0.01	0.03 0.69	0.2 <0.2	0.308 0.362
032021		73.7	480	0.7	0.3	< 0.001	1.11	3.32	9.0 10.5	1.3 <0.2	2.8 0.3	28.5 43.6	<0.01 <0.01	0.69	0.2	0.352
042021		4.1	1140	3.0	0.6	<0.001	<0.01	0.16		200 200						
052021		4.4	990	6.3	2.8	<0.001	<0.01	0.51	12.2	0.2	0.2	82.1	<0.01	0.02	0.2	0.360 0.290
062021		6.3	1110	1.2	0.2	0.001	0.01	1.17	5.7	<0.2	0.3	187.0	<0.01 <0.01	0.01 0.01	0.2 0.3	0.290
072021		5.4	1280	1.4	0.4	0.001	0.01	0.42	11.8 10.7	<0.2 <0.2	0.3 0.4	104.5 56.2	<0.01	<0.01	0.2	0.339
082021		7.8 6.2	890 410	1.3	0.8 1.2	<0.001 <0.001	<0.01 0.01	0.66 0.62	9.7	<0.2	0.4	17.9	<0.01	0.04	0.2	0.172
092021	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			4.8												
102021		52.3	590	0.9	2.8	<0.001	<0.01	0.11	6.7	<0.2	<0.2	42.1	<0.01	< 0.01	0.3 0.2	0.194 0.155
112021		18.3	590	2.0	4.0	< 0.001	<0.01	0.38	8.7	<0.2 <0.2	0.3 0.3	43.4 25.0	<0.01 <0.01	<0.01 0.01	<0.2	0.133
122021		5.9	550	1.7	3.8	< 0.001	0.02	0.24 0.45	5.8 2.2	0.8	0.3	63.1	<0.01	0.11	0.5	0.034
132021		2.6 19.9	220 350	10.8 14.7	8.6 0.6	<0.001 <0.001	0.84 0.06	0.45	31.4	0.8	0.4	129.5	<0.01	0.02	0.2	0.357
142021															0.2	0.180
152021		1.8	550	0.8	1.2	< 0.001	<0.01	0.88	4.0	<0.2	0.3	24.9 28.2	<0.01 <0.01	<0.01 0.22	0.2	0.180
162021		10.0	530	6.2	2.2	0.005	0.97	0.42 0.65	6.6 7.7	1.1 <0.2	0.4 0.4	36.6	<0.01	0.22	0.3	0.136
172021		6.3	510	2.3	3.9	<0.001 0.002	<0.01 1.78	0.65	6.1	1.6	0.4	23.1	<0.01	0.67	0.2	0.091
182021		17.1 3.5	480 820	6.5 3.2	0.6 2.8	< 0.002	0.15	0.76	5.1	<0.2	0.4	41.5	<0.01	0.06	<0.2	0.170
192021														1.38	<0.2	<0.005
202021		13.9	500	8.2	3.7	0.001	3.68	2.16	7.6	9.1	0.4 0.4	12.9	<0.01 <0.01	2.19	0.2	<0.005
212021		7.4	420	14.1	3.1	0.003 0.019	0.42 1.73	13.35 0.99	8.4 6.9	5.1 5.1	0.4	6.5 27.6	<0.01	1.03	0.2	0.104
222021		15.9 15.4	480 470	12.6 9.5	1.5 3.3	0.019	1.23	0.99	6.4	4.3	1.0	36.0	< 0.01	1.13	0.5	0.111
232021 242021		10.7	550	1.8	3.7	< 0.001	0.01	0.26	10.3	<0.2	0.3	27.6	<0.01	0.01	0.2	0.190
		0.000	150000	STORY	75555				9.5	4.4	0.4	42.2	<0.01	0.39	0.2	0.101
252021		12.4 8.2	410 170	8.1 8.3	2.3 3.8	<0.001 <0.001	3.94 0.06	0.35 0.45	9.5 12.8	1.0	0.4	18.6	<0.01	0.35	0.2	0.243
262021		3.3	410	4.6	3.5	< 0.001	0.14	0.42	7.3	1.7	0.4	26.9	<0.01	0.76	0.2	0.134
272021 282021		1.8	240	39.6	4.1	<0.001	0.39	0.41	3.4	3.5	0.3	4.3	< 0.01	1.37	<0.2	0.101
292021		5.4	690	2.0	2.3	<0.001	0.17	0.68	14.6	0.3	0.7	35.7	< 0.01	0.16	0.2	0.359
		12.3	420	2.3	2.2	<0.001	0.06	0.54	7.5	0.2	0.5	45.6	<0.01	0.02	0.2	0.164
302021		12.3	420	2.3	2.2	<0.001	0.00	0.54	7.5	0.2	0.5	40.0	X0.01	0.02	V.E	0.10

172021

182021

192021

202021

212021

222021

232021

242021

252021

262021

272021

282021

292021

302021

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TCHAIKAZAN RESOURCES INC. **BOX 32** TATLA LAKE BC VOL 1VO

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-NOV-2021

Account: TCHRES

Project: Bluff Property

· /									CERTIFICATE OF ANALYSIS KL21282842
Sample Description	Method Analyte Units LOD	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
2020 01		0.02	0.11	8	0.09	11.10	22	2.6	
012021		<0.02	0.94	27	0.10	6.06	2	7.9	
022021		<0.02	0.17	122	0.18	9.71	92	11.6	
032021		0.06	<0.05	92	0.68	4.41	48	22.4	
042021		<0.02	0.14	147	0.45	13.25	70	4.3	
052021		0.05	0.12	117	0.72	14.20	82	3.6	
062021		< 0.02	0.18	87	0.40	14.20	42	7.5	
072021		<0.02	0.24	164	0.50	10.45	93	3.9	
082021		<0.02	0.16	119	0.31	15.75	74	5.5	
092021		<0.02	0.12	43	0.23	14.60	158	2.6	
102021		0.03	0.16	147	0.18	5.06	35	1.6	
112021		0.06	0.30	75	0.06	11.45	70	10.2	
122021		0.05	0.16	37	0.10	9.85	94	7.3	
132021		0.09	0.19	18	0.06	4.16	41	2.6	
142021		<0.02	0.21	215	0.11	13.85	94	16.1	
152021	4668	<0.02	0.15	47	0.24	12.35	22	1.9	
162021		0.03	0.14	73	0.11	10.75	82	5.3	

13.0

1.1

7.3

0.6

< 0.5

2.0

2.3

1.5

3.0

2.6

2.9

3.2

22.4

9.7

0.05

< 0.02

0.05

0.11

0.07

0.04

0.09

0.03

0.03

0.09

0.07

0.11

0.04

0.03

0.20

0.08

0.11

< 0.05

0.05

0.15

0.23

0.10

0.08

0.09

0.19

0.12

0.28

0.19

59

74

47

75

61

82

49

115

107

128

87

46

198

68

0.15

0.06

0.10

<0.05

< 0.05

80.0

0.21

0.07

0.08

< 0.05

< 0.05

< 0.05

0.10

0.12

8.31

6.59

10.85

2.24

3.46

5.27

8.61

5.89

10.00

0.97

3.53

0.67

23.5

8.00

94

103

112

62

95

593

50

59

33

78

63

45

117

ALS Canada Ltd. www.alsglobal.com/geochemistry

To: TCHAIKAZAN RESOURCES INC. **BOX 32** TATLA LAKE BC VOL 1V0

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-NOV-2021

Account: TCHRES

Project: Bluff Property

CERTIFICATE OF ANALYSIS KL21282842

		CERTIFICATE CO	MMENTS	
			LYTICAL COMMENTS	
Applies to Method:	ME-MS41	netnod are semi–quantitative di	ue to the small sample weight used (0.5	g).
			DRATORY ADDRESSES	
Applies to Method:	Processed at ALS Kamloops lo CRU-31 PUL-QC	ocated at 2953 Shuswap Drive, I CRU-QC SPL-21	Kamloops, BC, Canada. LOG–22 WEI–21	PUL-31
Applies to Method:	Processed at ALS Vancouver lo ME-MS41	ocated at 2103 Dollarton Hwy,	North Vancouver, BC, Canada.	
	4			

To: TCHAIKAZAN RESOURCES INC. **BOX 32** TATLA LAKE BC VOL 1V0

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-NOV-2021

This copy reported on 30-NOV-2021

Account: TCHRES

CERTIFICATE KL21300359

Project: Bluff Property

This report is for 32 samples of Soil submitted to our lab in Kamloops, BC, Canada on 19-OCT-2021.

The following have access to data associated with this certificate: SUSAN ROLSTON

SAMPLE PREPARATION							
ALS CODE DESCRIPTION							
WEI-21 Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode						
SCR-41	ACTION OF A SECTION AND A SECTION OF A SECTION AND A SECTION AND A SECTION ASSESSMENT AS						

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT						
ME-MS41 Ultra Trace Aqua Regia ICP-MS								

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0 Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-NOV-2021

Account: TCHRES

(ALS)							CERTIFICATE OF ANALYSIS KL21300359									
Sample Description	Method	WEI–21	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Recvd Wt.	Ag	AI	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.01	0.01	0-1	0.02	10	10	0.05	0.01	0.01	0.01	0.02	0.1	1	0.05
Pit 1 a		0.34	0.09	2.54	6.8	<0.02	<10	80	0.24	0.10	1.05	0.08	8.94	8.5	31	0.65
Pit 1 b		0.47	0.12	2.63	9.9	<0.02	<10	70	0.24	0.11	1.21	0.20	11.90	14.4	30	0.66
Pit 2 a		0.39	0.07	2.62	12.1	<0.02	<10	80	0.27	0.11	1.09	0.05	10.45	9.8	27	0.67
Pit 2 b		0.52	0.09	2.51	11.5	<0.02	<10	60	0.24	0.10	1.26	0.11	9.55	12.6	24	0.56
Pit 3 a		0.36	0.09	2.94	9.9	<0.02	<10	110	0.26	0.15	1.17	0.06	7.69	9.1	25	0.75
Pit 3b		0.39	0.13	2.49	9.1	<0.02	<10	60	0.17	0.09	1.27	0.11	8.27	9.3	21	0.42
Pit 3c		0.47	0.09	2.57	9.0	<0.02	<10	80	0.19	0.14	1.22	0.08	8.42	9.6	23	0.53
Pit 4a		0.52	0.15	2.40	48.7	0.02	<10	70	0.38	0.15	0.73	0.25	10.00	11.4	14	0.93
Pit 4b		0.43	0.13	2.44	16.6	<0.02	<10	80	0.24	0.15	0.69	0.14	10.70	10.4	20	0.71
Pit 5a		0.44	0.09	2.85	24.4	<0.02	<10	90	0.30	0.21	0.69	0.21	9.78	11.6	19	0.82
Pit 5b		0.45	0.06	3.40	23.1	<0.02	<10	110	0.26	0.16	0.64	0.12	11.05	13.1	19	1.05
Pit 6a		0.53	0.12	3.08	20.9	<0.02	<10	70	0.24	0.19	0.55	0.25	9.80	12.0	18	0.97
Pit 6b		0.50	0.13	2.80	19.6	<0.02	<10	60	0.29	0.17	0.55	0.33	8.58	11.8	17	1.00
Pit 7a		0.49	0.17	3.52	35.4	0.02	<10	110	0.32	0.35	0.84	0.25	10.75	15.5	24	1.20
Pit 7b		0.41	0.08	3.01	12.3	<0.02	<10	70	0.29	0.14	0.67	0.20	11.85	15.1	19	0.67
Pit 8		0.53	0.27	3.65	48.9	0.04	<10	100	0.24	0.64	0.19	0.10	7.78	7.3	23	1.83
Pit 9		0.43	0.18	3.03	37.5	0.02	<10	70	0.28	0.71	0.27	0.46	8.29	12.1	22	4.10
Pit 10		0.41	0.20	2.54	87.0	0.04	<10	40	0.37	1.24	0.37	0.38	11.40	25.2	27	1.43
Pit 11		0.37	0.49	3.15	53.6	0.06	<10	100	0.24	1.25	0.24	0.06	7.46	8.5	19	1.95
Pit 12a		0.52	0.53	4.66	42.0	0.04	<10	120	0.38	0.77	0.39	0.12	10.35	30.3	22	2.61
Pit 12b Pit 13 Pit 14a Pit 14b Pit 15		0.50 0.48 0.50 0.55 0.48	0.45 0.08 0.26 0.15 0.15	3.77 2.09 2.79 3.35 2.99	36.3 22.7 17.8 19.4 20.8	0.03 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	100 60 50 60	0.34 0.24 0.26 0.30 0.27	0.69 0.35 0.23 0.30 0.26	0.33 0.54 0.50 0.60 0.53	0.11 0.12 0.10 0.13 0.07	9.95 8.02 9.87 15.25 9.56	22.0 9.1 12.4 14.9 10.4	21 18 20 24 19	2.03 0.61 0.73 0.92 0.80
Pit 16a Pit 16b Pit 17 Pit 18 Pit 19a		0.40 0.39 0.50 0.44 0.48	0.55 0.48 0.08 0.83 0.15	2.80 2.47 1.93 1.56 2.19	29.1 42.9 26.6 28.8 83.3	<0.02 0.03 <0.02 0.02 <0.02	<10 <10 <10 <10 <10	60 50 50 50 70	0.22 0.16 0.27 0.11 0.25	0.56 0.62 0.15 1.39 0.41	0.15 0.07 0.23 0.08 0.28	0.03 0.02 0.11 0.02 0.07	11.50 10.90 10.80 5.01 9.58	7.7 5.1 10.8 3.3 9.1	27 27 32 15 14	1.89 2.62 1.64 1.17 0.42
Pit 19b		0.59	0.20	3.01	71.0	<0.02	<10	110	0.28	0.34	0.28	0.13	9.86	12.6	15	0.56
Pit 20		0.60	0.08	2.69	25.2	<0.02	<10	70	0.21	0.22	0.39	0.09	10.05	11.8	22	0.57

To: TCHAIKAZAN RESOURCES INC. **BOX 32** TATLA LAKE BC VOL 1VO

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-NOV-2021

Account: TCHRES

(AL)	,								CERTIFICATE OF ANALYSIS KL2130								
Sample Description	Method Analyte Units LOD	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	
Pit 1 a Pit 1 b Pit 2 a Pit 2 b Pit 3 a Pit 3 b Pit 3 c Pit 4 a		48.9 62.9 40.4 60.7 57.1 62.5 52.6 176.0	2.86 3.30 3.18 3.20 3.48 3.06 3.09 3.95	6.69 7.01 6.67 6.78 6.99 6.20 6.23 5.75	<0.05 <0.05 <0.05 0.05 <0.05 <0.05 <0.05 <0.05	0.09 0.11 0.08 0.11 0.09 0.06 0.07 0.06	0.04 0.02 0.02 0.02 0.03 0.04 0.02 0.05	0.020 0.022 0.019 0.019 0.021 0.016 0.018 0.022	0.07 0.09 0.07 0.05 0.07 0.04 0.05 0.05	5.3 5.4 4.8 4.3 3.6 3.9 4.2 5.5	11.0 12.1 12.7 10.0 13.8 9.8 12.5 13.9	0.77 0.94 0.70 0.91 0.70 0.85 0.79 0.81	322 633 361 465 330 362 371 722	1.13 1.16 1.42 0.72 1.03 0.72 0.74 2.11	0.04 0.06 0.05 0.08 0.06 0.08 0.07 0.01	0.73 0.60 0.84 0.27 0.63 0.29 0.50 0.45	
Pit 4b Pit 5a Pit 5b Pit 6a Pit 6b Pit 7a Pit 7b		168.0 71.0 144.0 57.4 44.0 105.5 72.2	3.03 3.51 3.52 3.34 3.16 4.90 3.09	5.71 6.60 6.66 7.02 6.68 8.42 6.36	<0.05 0.05 <0.05 <0.05 <0.05 0.05 <0.05	0.05 0.03 0.05 0.04 0.04 0.11 0.09	0.06 0.03 0.05 0.03 0.03 0.13 0.07	0.020 0.020 0.019 0.020 0.020 0.031 0.018	0.03 0.06 0.05 0.09 0.09 0.13 0.05	5.5 4.5 4.8 3.5 3.4 4.8 4.9	10.5 13.2 17.3 9.9 9.5 13.9 11.1	0.74 0.81 0.77 0.81 0.72 1.11 0.75	474 436 436 420 416 717 580	1.05 1.68 1.76 1.72 1.51 2.99 0.91	0.02 0.02 0.02 0.01 0.01 0.03 0.03	0.43 0.62 0.47 0.84 0.89 0.31 0.36	
Pit 8 Pit 9 Pit 10 Pit 11 Pit 12a		120.5 47.8 101.0 158.0 107.0	6.05 5.85 6.84 5.36 5.63	7.64 7.53 5.07 7.03 9.29 7.65	<0.05 <0.05 0.07 <0.05 <0.05	0.15 0.04 0.04 0.06 0.09	0.09 0.15 0.86 0.08 0.05	0.026 0.031 0.063 0.046 0.035	0.05 0.07 0.05 0.07 0.08	3.3 3.8 4.5 3.8 4.3	13.0 15.9 13.4 11.0 14.3	0.90 0.76 1.21 0.84 0.99	401 481 722 372 520	3.33 2.99 6.52 8.59 4.52	0.01 0.01 0.01 0.01 0.02	0.82 1.08 0.30 0.74 0.60	
Pit 12b Pit 13 Pit 14a Pit 14b Pit 15		42.8 49.8 84.2 40.3	3.51 3.35 3.88 3.55 5.68	5.73 6.64 7.48 7.16	<0.05 <0.05 <0.05 <0.05 <0.05	0.04 0.03 0.04 0.03	0.01 0.02 0.02 0.02 0.02	0.020 0.020 0.021 0.022	0.04 0.06 0.09 0.06	3.6 3.9 4.7 3.7	11.3 10.0 11.8 10.4	0.78 0.86 1.05 0.86	352 408 625 385	2.33 1.39 1.49 1.14	0.02 0.01 0.02 0.01	0.62 0.81 0.77 0.87	
Pit 16a Pit 16b Pit 17 Pit 18 Pit 19a Pit 19b		57.7 43.5 47.0 67.9	7.35 4.53 4.22 5.77	6.39 5.02 3.72 5.64	<0.05 <0.05 <0.05 <0.05 <0.05	0.12 0.07 0.10 0.13	0.12 0.01 0.05 0.04	0.037 0.021 0.031 0.032	0.05 0.04 0.04 0.03	4.7 4.7 2.9 3.8	9.0 10.5 4.9 7.7	0.70 0.92 0.33 0.52	251 367 165 321	2.81 1.82 1.23 2.35	0.01 0.02 0.01 0.01	0.51 0.39 0.40 0.32	
Pit 20		52.1	3.82	5.80	<0.05	0.12	0.01	0.018	0.03	3.0	9.2	0.85	416	1.23	0.02	0.32	

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0 Page: 2 - C
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 29-NOV-2021

CERTIFICATE OF ANALYSIS KL21300359

Account: TCHRES

	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Ni	Р	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	%							
Sample Description	LOD	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2	0.005
Pit 1a		19.1	370	3.8	4.8	0.003	0.02	0.41	8.0	0.6	0.3	32.0	<0.01	0.04	1.1	0.115
Pit 1 b		18.1	560	5.2	4.7	0.002	0.01	0.46	8.2	0.4	0.4	39.2	< 0.01	0.05	1.1	0.129
Pit 2a		15.2	210	4.3	5.5	0.004	0.01	0.48	7.2	8.0	0.3	30.8	< 0.01	0.08	1.0	0.124
Pit 2b		13.3	570	4.3	2.7	0.001	< 0.01	0.44	7.5	0.4	0.3	39.5	<0.01	0.07	8.0	0.127
Pit 3a		13.7	160	3.8	4.7	0.003	0.01	0.41	8.3	0.2	0.3	35.6	<0.01	0.05	0.8	0.131
Pit 3b		11.0	630	3.4	2.3	0.001	0.01	0.33	6.7	0.2	0.3	37.8	<0.01	0.09	8.0	0.129
Pit 3c		12.5	460	3.5	3.2	0.002	0.01	0.36	7.0	0.4	0.3	36.9	<0.01	0.06	0.7	0.113
Pit 4a		12.2	390	14.3	5.5	0.001	0.01	0.83	6.7	1.8	0.3	22.1	< 0.01	0.41	0.5	0.072
Pit 4b		16.1	510	5.5	2.5	0.005	0.01	0.40	6.6	0.8	0.3	23.0	< 0.01	0.16	1.1	0.116
Pit 5a		14.3	350	9.3	6.1	0.001	0.02	0.56	6.5	3.1	0.4	24.8	<0.01	0.38	0.6	0.114
Pit 5b		18.5	440	8.2	3.7	0.002	0.01	0.43	6.6	3.0	0.3	26.6	<0.01	0.26	1.0	0.113
Pit 6a		12.0	360	7.8	6.9	< 0.001	0.01	0.45	5.6	0.6	0.4	28.6	< 0.01	0.31	0.6	0.121
Pit 6b		11.8	350	7.3	8.8	< 0.001	0.01	0.43	5.2	0.6	0.4	25.6	< 0.01	0.28	0.6	0.124
Pit 7a		13.6	500	14.7	4.7	0.001	0.03	0.93	10.2	1.9	0.5	47.0	<0.01	0.73	0.7	0.144
Pit 7b		15.0	420	6.1	2.5	0.001	<0.01	0.48	7.3	0.5	0.3	39.4	<0.01	0.19	0.9	0.131
Pit 8		10.2	920	21.0	5.3	< 0.001	0.06	1.42	6.8	5.4	0.6	15.1	< 0.01	1.05	8.0	0.152
Pit 9		14.9	600	20.7	8.0	0.001	0.08	2.23	4.8	6.9	0.5	14.2	< 0.01	1.05	0.6	0.102
Pit 10		10.8	510	21.3	4.0	0.003	0.02	12.60	9.6	20.1	0.4	10.6	< 0.01	3.02	0.4	0.030
Pit 11		10.4	550	25.4	5.3	0.001	0.04	1.33	5.3	8.0	0.9	24.3	< 0.01	2.11	1.1	0.119
Pit 12a		19.8	590	17.9	6.3	0.001	0.04	2.26	7.0	4.8	0.5	55.0	<0.01	0.64	1.1	0.090
Pit 12b		15.9	520	17.8	6.1	< 0.001	0.03	2.28	5.7	3.2	0.5	46.4	<0.01	0.65	0.9	0.078
Pit 13		10.1	350	8.0	5.1	0.001	0.02	0.83	5.0	1.4	0.4	21.3	< 0.01	0.32	0.7	0.123
Pit 14a		12.9	540	5.8	7.5	<0.001	0.01	0.57	4.8	0.6	0.3	22.2	< 0.01	0.16	0.6	0.115
Pit 14b		14.2	560	6.5	7.3	<0.001	0.01	0.60	6.4	0.8	0.4	24.5	< 0.01	0.20	0.8	0.128 0.118
Pit 15		11.4	470	5.6	7.3	<0.001	0.01	0.51	5.3	0.7	0.4	27.6	<0.01	0.19	0.6	
Pit 16a		11.5	340	17.7	4.0	<0.001	0.01	0.77	5.7	1.9	0.4	13.9	< 0.01	0.44	1.2	0.098
Pit 16b		9.6	420	26.1	4.0	< 0.001	0.03	1.08	7.9	2.6	0.5	8.4	< 0.01	0.94	1.0	0.137
Pit 17		6.7	420	6.6	3.8	0.001	0.04	1.21	5.9	1.8	0.4	21.9	< 0.01	0.50	0.4 0.4	0.106 0.089
Pit 18		4.1	400	42.5	2.7	<0.001	0.04	0.95	3.5	4.4	0.5	10.9	<0.01	1.33	0.4	0.089
Pit 19a		7.3	630	12.0	2.5	0.001	0.04	1.37	6.5	2.8	0.4	25.6	<0.01	0.99		
		9.5 10.3	550	11.5 11.9	3.6	< 0.001	0.03	1.25	6.5	2.4	0.4	29.1	< 0.01	0.79	0.7 0.8	0.138 0.125
Pit 19b			270		2.6	< 0.001	0.03	0.61	4.9	1.4	0.3	47.7	< 0.01	0.19		

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0 Page: 2 - D
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 29-NOV-2021

Account: TCHRES

Project: Bluff Property

CERTIFICATE OF ANALYSIS KL21300359

									CERTIFICATE OF ANALTSIS RE21300333
Sample Description	Method Analyte Units LOD	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
	LOD								
Pit 1a		0.05	0.36	62	0.11	9.62	69	3.0	
Pit 1b		0.05	0.28	74	0.15	9.36	66	3.5	
Pit 2a		0.05 0.03	0.35 0.24	72 75	0.15 0.11	8.20 8.98	38 50	2.8 3.3	
Pit 2b Pit 3a		0.05	0.24	63	0.11	7.80	35	2.7	
Pit 3b		0.03 0.03	0.27 0.27	68 64	0.11 0.14	8.77 8.38	56 43	1.9 2.3	
Pit 3c Pit 4a		0.03	0.27	59	0.14	14.00	161	2.3 1.8	
Pit 4a Pit 4b		0.05	0.47	59	0.36	12.70	88	2.0	
Pit 5a		0.05	0.27	69	0.13	11.25	137	1.1	
Pit 5b		0.10	0.35	72	0.14	12.20	104	1.9	
Pit 6a		0.10	0.35	65	0.14	5.70	84	1.4	
Pit 6b		0.05	0.25	64	0.17	5.21	104	1.3	
Pit 7a		0.07	0.26	81	0.12	10.65	86	3.9	
Pit 7b		0.05	0.31	66	0.12	9.80	47	3.1	
Pit 8	***************************************	0.10	0.28	75	0.21	6.18	53	4.5	
Pit 9		0.13	0.24	72	0.19	6.45	124	1.5	
Pit 10		0.06	0.24	61	80.0	9.84	190	1.2	
Pit 11		0.09	0.29	63	0.10	3.59	60	2.2	
Pit 12a		0.10	0.33	73	0.14	5.35	71	3.2	
Pit 12b		0.08	0.27	69	0.13	4.41	65	2.6	
Pit 13		0.03	0.25	70	0.12	5.42	51	1.7	
Pit 14a		0.03	0.29	66	0.14	5.60	56	1.1	
Pit 14b		0.05	0.33	76	0.14	7.85	61	1.6	
Pit 15		0.04	0.28	70	0.15	5.50	51	1.4	
Pit 16a		0.11	0.31	86	0.06	3.86	52	4.5	
Pit 16b		0.13	0.22	86	0.06	2.97	52	4.3	
Pit 17		0.06 0.11	0.23 0.22	75 52	<0.05 <0.05	7.88 1.34	104 34	1.8 3.0	
Pit 18 Pit 19a		0.11	0.22	107	0.06	5.56	52	4.6	
		10.000		1000000	Market Mr.	TOWNS OF THE PARTY		200.000	
Pit 19b		0.06 0.05	0.27 0.25	106 70	0.05 0.09	5.57 4.10	62 53	5.2 3.5	
Pit 20		0.03	0.23	70	0.03	4.10	33	3.3	
		l							
		L							

To: TCHAIKAZAN RESOURCES INC. BOX 32 TATLA LAKE BC VOL 1V0 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-NOV-2021

Account: TCHRES

CERTIFICATE	OF	ΔΝΔΙ ΥΚΙΚ	KL21300359
			LECTORIA S

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g). ME-MS41
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Kamloops located at 2953 Shuswap Drive, Kamloops, BC, Canada. LOG-22 SCR-41 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. ME-MS41