

BC Geological Survey Assessment Report

39955

Assessment Report Title Page and Summary

Ministry of Energy and Mines BC Geological Survey

TOTAL COST: \$ \$148.458 TYPE OF REPORT [type of survey(s)]: GEOCHEMISTRY, GEOPHYSICS 2021 SURVEYS AUTHOR(S): ROBERT WEICKER SIGNATURE(S): NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): NA YEAR OF WORK: 2021 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5856156 PROPERTY NAME: COPPERVIEW NORTH PROPERTY CLAIM NAME(S) (on which the work was done): SIWASH WEST 1000, MISSEZULA 2020, MISSEZULA 2020 -2, NICOLA 1000, NICOLA 5000, CONGLIN, THOR, THOR 2, CONGLIN 2, CONGLIN 3, 1073033, MIZZEZULA LAKE CONNECTOR, SIWASH NORTH COMMODITIES SOUGHT: COPPER, GOLD MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: JOSEE 092HNE249, CONGLIN CREEK 092HNE132 MINING DIVISION: Nicola NTS/BCGS: NTS 092H15E, BCGS 092H078 LONGITUDE: 120 LATITUDE: (at centre of work) OWNER(S): 1) D.J. Rippon (FMC 137109) 2) R.F. Weicker (FMC 128515) J.C, Bot (FMC 102844) MAILING ADDRESS: 33 – 590 17th Street, West Vancouver, BC V7V 3S7 Suite 2801, 1166 Melville St., Vancouver, BC, V6E 4P5 Box 4373, Quesnel, BC, V2J 3J4 OPERATOR(S) [who paid for the work]: 1) GOLDEN LAKE EXPLORATION INC. MAILING ADDRESS: 1240 - 789 Pender St W Vancouver BC CANADA V6C 1H2 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): Upper Triassic, Nicola Group, Eastern volcanic facies, Andesitic Basaltic Flow, Andesite, Basalt, Pyroclastic, Monzonite, Syenite Deposit Classification - Porphyry, Hydrothermal, Epigenetic Deposit Type - L03: Alkalic porphyry Cu-Au REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: EMPR ASS RPT *4694, *14141 EMPR ASS RPT 11373, 12351

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Induced Polarization		_	
Radiometric			
Seismic			
Other			
Airborne 770 Km Mobile M	IT -Expert Geophysics	All claims liste above	\$120,355.35
GEOCHEMICAL (number of samples analysed for)			
		CONGLIN 2, CONGLIN 3,	\$26,920.00
Silt			
		CONGLIN 2, CONGLIN 3,	\$1,183.00
Other			γ-)-οοιοο
DRILLING			
(total metres; number of holes, size)			
Non-core			
RELATED TECHNICAL			
Sampling/assaying		_	
Petrographic		_	
Mineralographic		_	
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)		_	
Topographic/Photogrammetric			
Road, local access (kilometres))/trail	_	
Underground dev. (metres)		_	
Other		_	
		TOTAL COST:	\$148,458

REPORT ON GEOCHEMISTRY AND GEOPHYSICS ACTIVTIES 2021 ON THE COPPERVIEW NORTH PROPERTY

Report Year: 2021

Report Dated March 14, 2022

SOW Event Number 5856156 December 14, 2021

REVISED NOVEMBER 30, 2022

CLAIM NAMES: SIWASH WEST 1000, MISSEZULA 2020, MISSEZULA 2020 -2, NICOLA 1000, SIWASH NORTH, NICOLA 5000, CONGLIN. THOR, THOR 2, CONGLIN 2, CONGLIN 3, 1073033, MIZZEZULA LAKE CONNECTOR

Nicola Mining Division

NTS / BCGS: 092H15E (NTS) / 092H078 (BCGS)

LATITUDE: 049° 47′ 46" N LONGITUDE: 120° 31′ 28" W

UTM Zone: NAD83 10 EASTING: 678156 NORTHING: 5518902

OPERATOR: Golden Lake Exploration Inc.

Suite 1240 - 789 Pender St W Vancouver BC CANADA V6C 1H2

PREPARED BY: Robert Weicker

Suite 2801 – 1166 Melville St.

Vancouver, British Columbia V6E 4P5

INDEX

1.0)	Introduction		7
2.0)	Property Description and Location		9
3.0		Access, Climate, Local Resources, Infrastructure and Physiography		14
	3.1	Accessibility	14	
	3.2	Climate	14	
	3.3	Local Resources and Infrastructure	14	
	3.4	Physiography	15	
3.0		History		17
	4.1	Conglin Creek Showing	17	
	4.2	Josee Showing	18	
5.0		Geological Settings and Mineralization		18
	5.1	Regional Geology	18	
	5.2	Property Geology	19	
6.0		Deposit Types		18
7.0		Exploration		20
8.0		Drilling		23
9.0		Sample Preparation, Analyses and Security		23
10.	0	Environmental Studies, Permitting and Social / Community Impacts		24
11.	0	Interpretation and Conclusions		25
12	Λ	Pecommendations		12

13.0	References	44
14.0	Statement of Qualifications	45
SUBMITTE	O AS A SEPARATE FILE	
Appendix A	A – Revised Expenditures	
Appendix E	B – Statement of Work	
Appendix C	– Assays – Rock and Soil Samples	
Appendix E	– Soil Samples Summary Tables	
Appendix F	- Martin's St Pierre Geophysical Memo	
SUBMITTE	O AS A SEPARATE FILE	
Appendix D	– Filed Separately - North and South Block MobileMT Project in B.C. for Gold	en Lake
Appendix D – Filed Separately - North and South Block MobileMT Project in B.C. for Golden Lake Exploration Inc., - Data Acquisition and Processing Report - Helicopter-borne MobileMT Electromagnetic & Magnetic survey Expert Geophysics' Job #21039 August 2021		
Electromag	netic & Magnetic survey Expert Geophysics' Job #21039 August 2021	
	FIGURES	
1	Location Map of the Copperview North Property	11
2	Copperview North Tenure and Access	12
3	Minfile Occurrences and Topographic Features	13
4	Geology – MapPlace	16
5	MobileMT Survey Area Location	28
6	MobileMT Survey North block flight path	29
7	Regional geology surrounding MobileMT Survey Area	30

MobileMT Survey Compilation

MobileMT – NORTHERN AREA TARGETS

10	Vinson Lake Location Map	34
11	Vinson Lake Area – Rock Samples – Gold Results	35
12	Vinson Lake Area – Rock Samples – Copper Results	36
13	Vinson Lake Area – Rock Samples – Silver Results	37
14	Vinson Lake Area – Soil Sampling Location Map	38
15	Vinson Lake Area – Soil Samples – Silver Results	39
16	Vinson Lake Area – Soil Samples – Gold Results	40
17	Vinson Lake Area – Soil Samples – Copper Results	41
18	Vinson Lake Area Compilation	42

TABLES

1	Tenure Status	7
2	Description of Rock Samples – Summer 2021	33

1.0 INTRODUCTION

The Copperview North property is located in southern British Columbia in the Nicola Mining Division (Figure 1), and within the mineral rich Quesnellia Terrane. This report describes the exploration history, geology, mineralization, exploration activities completed during 2021, and conclusions and recommendation on the Copperview North property (the "Property") near Merritt, British Columbia. This report relates to **Event Number 5856156**, recorded on December 14, 2021, with a total value of work of **\$164,100**.

Revisions and corrections to the report were requested on November 18, 2022 and were completed and resubmitted to the Ministry under the same event number on November 30, 2022. Revised sections in this report are indicated by *bold, italics, font. The revised total value* of work is \$148,458.

The Copperview North property is being acquired by Golden Lake Exploration Inc. ("GLM), from vendors, D.J. Rippon, and J.C. Bot, through option agreements. *At the time of the original report,* one claim is held by the author, R.F. Weicker on behalf of GLM. GLM has offices at Suite 1240, 789 Pender St W Vancouver B.C., V6C 1H2. At the time of the work activities, the Copperview North property comprised thirteen (13) claims with 7961.6 hectares.

The property is being explored with the purpose of assessing potential for copper, gold, and / or silver deposits based on historic mineral showings and past operators work in the area. The 2021 program consisted of a helicopter-borne MobileMT electromagnetic and magnetic survey completed by Expert Geophysics Limited (EGL), and a soil geochemistry and prospecting program over one target area.

The purpose of the MobileMT survey was to assist the mapping of bedrock structure and lithology, including possible alteration and mineralization zones, observing apparent conductivity corresponding to different frequencies, inverting EM data to obtain the distribution of resistivity with depth, and using VLF EM and magnetic data to study properties of the bedrock units. A total of 9 production flights were flown to complete 1072 line-kilometers of the survey over two blocks; with Copperview North presented by the "North Block" with 770 line-kilometers of the survey over a 155 sq.km area.

The Mobile MT survey was flown using a Eurocopter AS 350 B2 helicopter, registration C-GMHP, of the aviation company Mustang Helicopters. The survey production flights started on June 12, 2021, and data acquisition was completed on June 18, 2021. The survey operations were conducted from AP Ranch Guest Ranch in the Thompson-Nicola Regional District of British Columbia. The survey lines for both blocks are oriented N-S (90°N) at 200 m spacing, while tie lines are oriented in perpendicular direction to the survey lines and spaced at 2000 m.

The complete report by Expert Geophysics Limited (EGL) is included in Appendix D. In this report, geophysical survey results are presented in the form of digital databases, maps, grids, sections, elevation slices and 3D voxels. The report describes the data acquisition, processing and inversion procedures, equipment and digital data specifications, basic data analysis.

The prospecting, surface sampling of rock outcrops, and soil geochemistry over the Vinson Lake targets was completed by personnel of Exploration Facilitation Unlimited Inc. between August 19 to 24, 2021 from a motel based in Merritt B.C. A total of 207 soil samples and **7** rock samples were taken and assayed by ALS Global - Geochemistry Analytical Lab in North Vancouver, BC, Canada (a division of ALS Canada Ltd.).

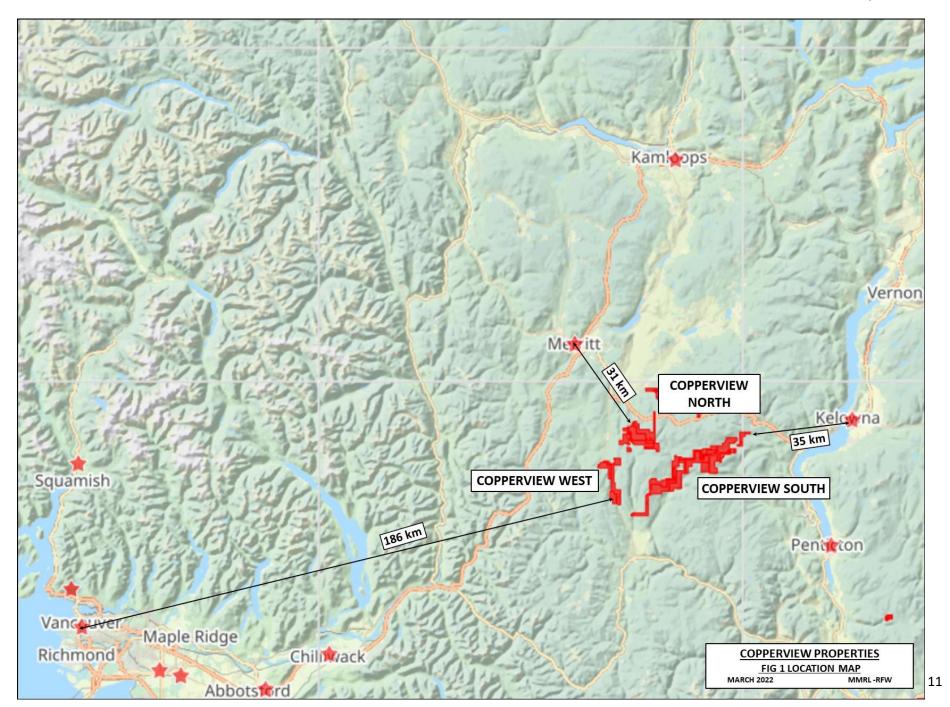
Several geophysical and geochemistry (copper-in-soil) anomalies were indicated from the 2021 field activities and additional exploration is recommended.

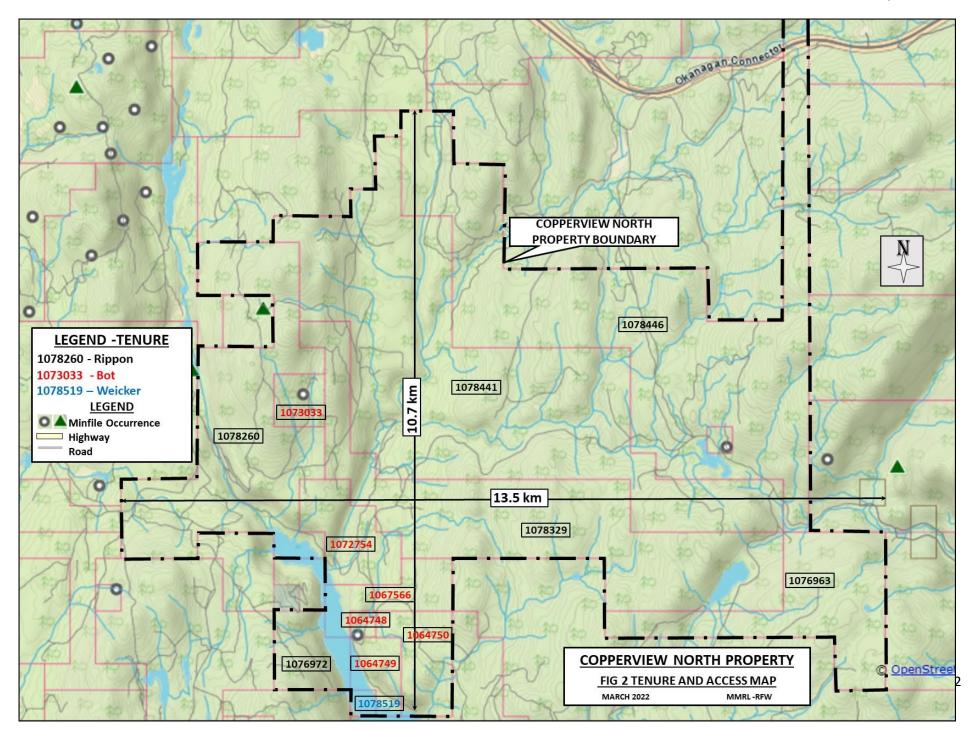
Unless otherwise indicated, all coordinates are referenced to the North American Datum (NAD) 1983, Universal Transverse Mercator (UTM) Zone 10 coordinate system. All dollar amounts referred to in this report are in Canadian currency.

2.0 PROPERTY DESCRIPTION AND LOCATION

The Copperview North property ("property") is located south of the Okanagan Connector, Highway 97C, which connects Merritt with Kelowna (Fig 1). The northcentral portion of the property is located 31 air kilometers southeast of the town of Merritt, within the Nicola Mining Division. The main exploration target is at Conglin Creek, just east of Missezula Lake, and this location is at latitude, 49° 47′ 46″ N and longitude, 120° 31′ 28″ E, and in UTM Zone 10 (NAD 83), 5518902 N, and 678156 E. The property lies in 092H/078 under BCGS system, and 092H15E under the NTS system.

The Copperview North property consists of thirteen (13 claims) totalling 7961.6 hectares (ha), and measures approximately 13.5 kilometers in an east-west direction and 10.7 kilometers in a north-south direction (Fig 2) The property is being acquired by Golden Lake Exploration Inc. ("GLM", or the" Company"), from vendors, D.J. Rippon, and J.C. Bot, through option agreements:


- In a GLM press release dated September 8, 2020, GLM can earn a 100-per-cent interest in the Copperview project (Copperview North comprises 35% by area) from D.J. Rippon, with payments in cash of \$200,000 cash, issue a total of two million shares and spend \$1 million in a three-year time frame. A 2.5-per-cent net smelter returns royalty will be granted to the vendor of which 1.5 per cent can be purchased back by the company for \$1.5 million.
- In a GLM press release dated September 22, 2020, GLM can earn a 100 a 100-per-cent interest in the Conglin project from J.C. Bot with payments in cash of \$100,000 cash and issue a total of two million shares over a two-year time frame. A 2.5-per-cent net smelter royalty will be granted to the vendor of which 1.5 per cent can be purchased back by the company for \$1.5 million.


At the end of the original report, one claim was held by the author, R.F. Weicker on behalf of GLM. GLM has offices at Suite 1240, 789 Pender St W Vancouver B.C., V6C 1H2. At the time of the work activities, the Copperview North property comprised thirteen claims with 7961.6 hectares.

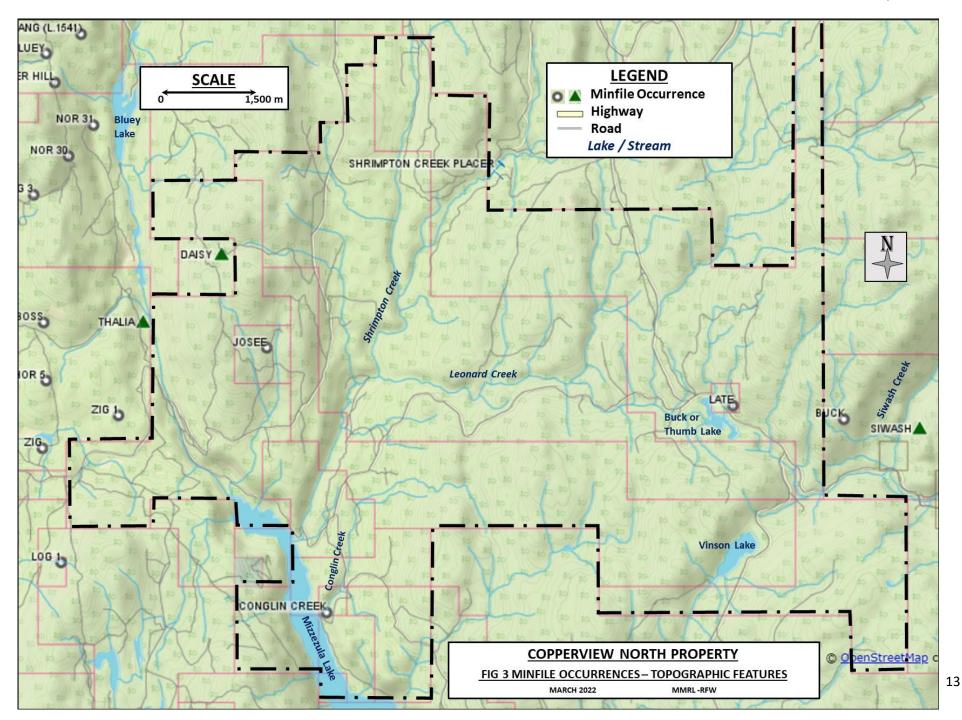

	COPPERVIEW NORTH HOLDI	NGS_				
Title Number	Claim Name	Owner FMC	Owner Name	Issue Date	Good To Date	Area (ha)
1076972	SIWASH WEST 1000	137109 (100%)	DJ Rippon	2020/JUN/26	2023/JUN/26	166.8587
1078260	MISSEZULA 2020	137109 (100%)	DJ Rippon	2020/AUG/29	2023/AUG/29	1042.0992
1078329	MISSEZULA 2020 -2	137109 (100%)	DJ Rippon	2020/SEP/03	2024/SEP/03	1209.1872
1078441	NICOLA 1000	137109 (100%)	DJ Rippon	2020/SEP/05	2024/SEP/05	2083.8326
1076963	SIWASH NORTH	137109 (100%)	DJ Rippon	2020/JUN/26	2024/JUN/26	563.0495
1078446	NICOLA 5000	137109 (100%)	DJ Rippon	2020/SEP/05	2024/SEP/05	2083.3103
1064748	CONGLIN	102844 (100%)	JC Bot	2018/NOV/29	2024/NOV/29	20.8553
1064749	THOR	102844 (100%)	JC Bot	2018/NOV/29	2025/JAN/15	104.2927
1064750	THOR 2	102844 (100%)	JC Bot	2018/NOV/29	2025/JAN/15	187.7194
1067566	CONGLIN 2	102844 (100%)	JC Bot	2019/MAR/30	2025/SEP/30	166.8266
1072754	CONGLIN 3	102844 (100%)	JC Bot	2019/NOV/16	2024/NOV/16	229.343
1073033		102844 (100%)	JC Bot	2019/DEC/1	2025/DEC/01	83.3609
1078519	MIZZEZULA LAKE CONNECTOR	128515 (100)	RF Weicker	2020/SEP/08	2024/SEP/08	20.86
						7961.60

TABLE 1 – TENURE STATUS

NOTE: The claims comprising the Copperview North Property are in good standing as of the date of this report.

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

3.1 Accessibility

The Copperview North property can be accessed by several well-maintained gravel roads and unnamed forestry service roads from Highway 5A west of the property or from Highway 97C north of the property (Fig 3).

Missezula Lake and the Conglin Creek target can be access from the town of Princeton travel north on Hwy. #5A, turning east onto the Summers Creek Road and travel 32 km. (19.8 mi.) to the south end of the lake. The lake can also be reached by travelling south on Hwy. #5A from the town of Merritt. The north end of the lake can be accessed by turning east off Hwy. #5A onto the secondary road leading to Hook and Ketchan Lakes.

The central and eastern portion of the property, covering the Vinson Lake target and Buck (aka Thumb) Lake area can be accessed by forest service roads south from Highway 97C.

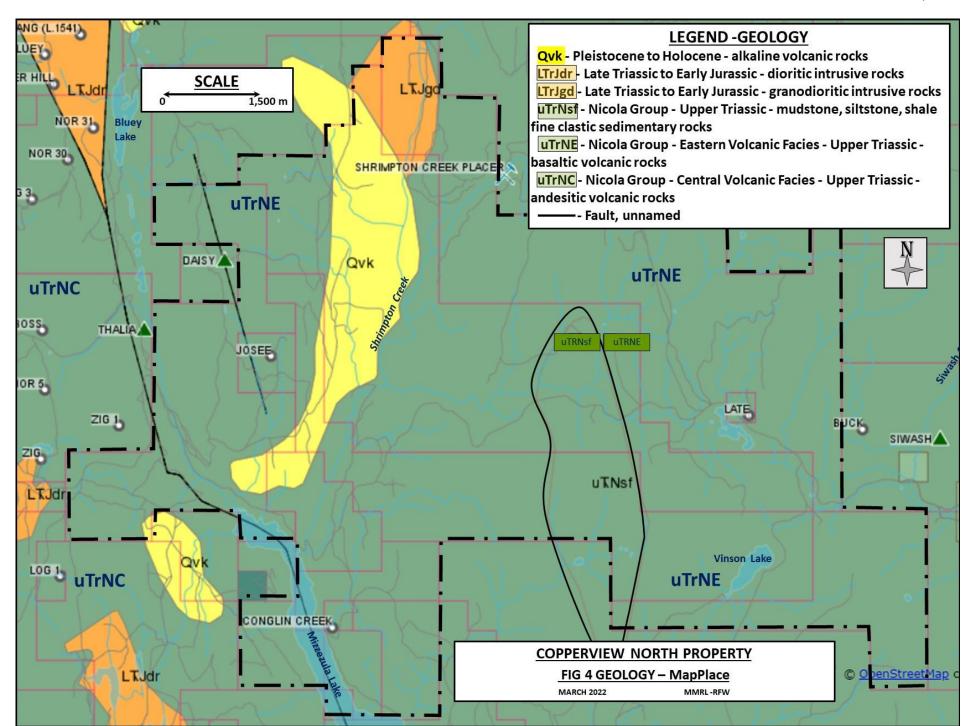
Elevation on the property ranges from 696 m. (2283 ft.) at Missezula Lake to approximately +1,700 meters (5,576 ft) just north of Buck (Thumb) Lake on the central-eastern portion of the property.

3.2 Climate

The climate of this part of the province is typical of the southern interior of British Columbia. The summer field season from mid to late April to late October is generally warm and dry, with daily high temperatures ranging from $+20^{\circ}$ to $+30^{\circ}$ C. Winters are cold with significant snow accumulations. Temperatures can drop to -20° C for extended periods.

3.3 Local Resources & Infrastructure

The logistics of working in this part of the province are excellent, with Highway access right to the property. Heavy equipment is available locally in Princeton, Kelowna, or Merritt, as are supplies, fuel and lodging.


Unskilled labour is available locally. Princeton, Merritt, and Kelowna are industrial centres with a skilled workforce currently employed at several large mines throughout the region. Depending on the type of exploration program to be conducted, the field season generally extends from late April to early November. A high-tension power line crosses the west side of the property.

Sufficient water for all phases of the exploration program should be available from the many lakes and creeks, which are located within the confines of the property. Water may be scarce during the summer months and any water required for exploratory purposes may have to be obtained from lakes on or near the Property and transported to the worksite

3.4 Physiography

The topography is typical of this part of the Thompson Plateau, reflecting the effects of a predominantly northerly structural trend, accentuated by glaciation; heavily forested, relatively gentle upland slopes are cut by deep, steep-sided, north trending valleys. Bedrock exposure varies and is largely a function of glacial action; generally, outcrop is abundant on ridges and along the upper slopes of steep valleys, but lower slopes and valley bottoms bear a thick mantle of glacial overburden.

Vegetation ranges from open grassy slopes to thick stands of fir, pine, spruce and poplar. Willowy deciduous cover is present in small swamp areas. Cattle range over much of the area and heavily treed areas are being actively logged. The eastern portion of the property near Buck (Thumb) Lake and Siwash Creek are defined deeply incised drainages and steep slopes and ridges.

4.0 HISTORY

The property covers two historic mineral showings: Conglin Creek (MinFile 092HNE132), and Josee (MinFile 092HNE249), and both are designated as "Showings". Conglin Creek is classified as L03: Alkalic porphyry Cu-Au and D03: Volcanic redbed Cu occurrence, and Josee is classified as a D03: Volcanic redbed Cu occurrence. The Copperview North area has two distinct period of exploration:

- 1970s to 1980s exploration directed at porphyry copper deposits based on the discovery and development of deposits like Brenda and Craigmont in the region.
- e Early to mid 1990s exploration directed at gold mineralization similar to the Elk Gold mine (that property flanks the eastern boundary of the Copperview North property), which is currently owned by Gold Mountain Mining Corp. Mineralization is classified as hosted in mesothermal quartz-sulphide veins in intrusive and volcanic rocks, along the discontinuity between the Nicola volcanic group and the Osprey Lake Batholith. Successful mined by Fairfield Minerals Ltd, between 1992 -1995, the Elk Gold mine produced approximately 1,460,000 g (51,500 oz) from a bulk sample open pit. Fairfield and other junior companies explored a vast area during this period include portion of the Copperview North property.

4.1 Conglin Creek

An excerpt from the Conglin Minfile report:

"The various showings comprising the Conglin Creek occurrence outcrop along the east side of Missezula Lake, north and south of Conglin Creek, over a distance of 1000 metres. Chalcopyrite, pyrite and minor bornite occur as veinlets and fine disseminations in small fracture zones in andesitic to basaltic flows and pyroclastics of the Upper Triassic Nicola Group (Eastern belt, Bulletin 69). This mineralization is developed along the west flank of a northwest-trending body of monzonite and syenite of Late Triassic to Early Jurassic age, some 2 kilometres in length. Chalcocite is also reported. Malachite accompanies this mineralization in a number of places. One chip sample assayed 0.25 per cent copper over 13.4 metres (Assessment Report 4694, page 3, 1973). A second sample yielded 0.08 gram per tonne gold, 7.1 grams per tonne silver and 3.71 per cent copper (Assessment Report 14141, 1985, Figure 12, sample 2022)."

The Conglin Creek target has been visited and sampled by the Company, but not during 2021 and is not detailed in this report.

4.2 **JOSEE SHOWING**

The Josee Showing (Minfile # 092HNE249) is described as a chalcocite showing, located 2.4 kilometres north-northeast of the north end of Missezula Lake (Preliminary Map 15, Sheet 5). This showing is in the Eastern volcanic facies of the Nicola Group (Geological Survey of Canada Map 41-1989).

An excerpt from the Josee Minfile report:

"Chalcocite occurs in a sequence of massive to crudely layered lahar deposits and volcanic conglomerate of the Upper Triassic Nicola Group (Eastern belt, Bulletin 69)."

The Company has not visited the Josee showing location. Assessment reports on the showing (#11373, 12351) have been reviewed and their focus overlaps with the Daisy showings located to the northwest, which is not part of the Copperview North property.

The Josee Showing area is viewed as a low priority exploration target at this time.

5.0 **GEOLOGICAL SETTING AND MINERALIZATION**

5.1 Regional Geology

The Upper Triassic Nicola Group rocks extend from the 49th parallel north to Kamloops Lake and continue north beneath Tertiary cover to emerge in the Quesnel area as the Quesnel Belt (Preto, 1979). The volcanics of the Quesnel and Nicola Belts form a mixed alkaline and calc-alkaline sequence of basalts and derived breccias, tuffs, and minor sediments.

The volcanic rocks are intruded by comagmatic alkaline plutons, ranging in composition from syenogabbro to alkali syenite. The intrusions appear to be structural related and occur in belts along major lineaments and faults. They vary in size from plugs to small batholiths and have been emplaced into the volcanic centres which produced the abundance of volcanic material (Barr et al, 1976).

In the Allison Lake-Missezula area, Preto has delineated three assemblages — a Western Belt of easterly dipping calc-alkaline flows, pyroclastics and sediments; a Central Belt of alkaline and calc-alkaline volcanics and intrusions, and minor sediments; and an Eastern Belt of westerly dipping volcanic sediments, tuffs and alkaline flows associated with small monzonite porphyry stocks. The belts are separated by major north-striking faults (Figs 4,7). Preto believes that the Central Belt

of dominantly volcanic rocks originates from eruptive centres along the major fault system and points out the greater concentrations of mineral deposits along this belt.

5.2 Property Geology

Due to the recent acquisition and assembly of the property by the Company and the early stage of exploration, the Company has not completed geological mapping of the property. Based on the geology from the BC MapPlace website and a review of assessment files the geology is presented on Figure 4.

Most of the Copperview North property lies west of a major north-south fault that transects Missezula Lake and defines the drainages to the north. This fault is interpreted to the northern extension, and/or a splay of the Summers Creek Fault, which marks the eastern boundary of Nicola Central Belt. Hence, most of the property is underlain by Nicola Group -Eastern Volcanic units comprising andesitic and basaltic rocks. A north-south trending lenses of Nicola Group Upper Triassic sediments comprising mudstone, siltstone, shale and clastic sedimentary rocks occurs in the central portion of the property. A stock of Late Triassic to Early Jurassic dioritic intrusive rock is mapped on the north central portion of the property, with younger (Pleistocene to Holocene) alkaline volcanic rocks forming an elongated embayment west of Shrimpton Creek.

6.0 **DEPOSIT TYPES**

The Copperview North property represents an early-stage exploration project, well situated in the southern portion of the prolific Quesnel Trough (or Quesnellia), of the Intermontane Tectonic Belt of South-Central British Columbia. The property is prospective for two significant deposit types, which are presented by historic mineral showings and past operators in the area, and currently by two high-profile exploration companies on the Copperview North property's eastern (Gold Mountain Mining Corp.- Elk Gold Mine Project) and southern (Kodiak Copper Inc. – MPD Project) borders:

➤ Copper-gold porphyry deposits — The Copperview North Nicola Belt geologic units have many similar characteristics to the nearby alkalic porphyry copper-gold systems at the Copper Mountain Mine to the south, New Gold's Afton Mine to the north, and the past producing Brenda Mine to

the east. Porphyry gold- copper systems are defined as large volumes of hydrothermally altered rock centered on porphyry copper stocks. Metal content is low- to medium-grade the distribution of primary ore minerals is dominantly structurally controlled and that may also contain skarn, carbonate-replacement, sediment-hosted, and high- and intermediate-sulphidation epithermal base and precious metal mineralization (Sinclair, 2007. Sillitoe, 2010). Located immediately south of the Copperview North property, is Kodiak Copper Inc. MPD property, a leading exploration project comprised of the consolidation of four copper-gold porphyry properties (Man, Prime, Dillard, and Axe). The Conglin Creek target on the Copperview North property is located only 4.7 kilometers north-north-west and on-trend (along the extension of the Summer Creek Fault) with the Gate Zone on Kodiak's MPD property which has returned a best intercept of 535m of 0.49% copper and 0.29 g/t gold (0.76% CuEq**), including 282 m of 0.70% copper and 0.49 g/t gold (1.16% CuEq**), including 45.7 m of 1.41% copper and 1.46 g/t gold (2.75% CuEq**) (Kodiak website - ** Metal prices used to calculate Cu Equivalent (% CuEq) are: Au \$1500/oz, Ag \$16/oz and Cu \$2.60/lb. All values report in USD and do not consider metal recoveries Copper equivalent grades (%CuEq) are for comparative purposes only.)

➤ Intrusive-related, structurally controlled mesothermal quartz vein system — At the Elk Gold Mine property, owned by Gold Mountain Mining Corp. ("Gold Mountain), the vein systems consist of structurally controlled; narrow, pyritic quartz veins hosted in granitic as well as volcanic rocks near the contact between these two primary lithologies. The entire eastern flank of the Copperview North property is contiguous with the Elk Gold Mine property. Targets at the Vinson Lake and Buck (Thumb) Lake area on the Copperview North property may host similar gold mineralization to the multiple mineralized zones on the Elk Gold Mine property. The following excerpt is from the Gold Mountain website (March 2022): "The proposed multi phase production plan will see a Phase 1 − 19,000 Oz. production profile beginning in Feb 2022, which will help fund our proposed ramp up to 65,000 Oz. by 2025. Concurrently with developing the mine, Management plans to continue drilling the nine known high grade mineralized zones, while continuing to explore other areas showing exciting potential."

7.0 EXPLORATION

The property is being explored with the purpose of assessing potential for copper, gold, and / or silver deposits based on historic mineral showings and past operators work in the area. The 2021 program consisted of a helicopter-borne MobileMT electromagnetic and magnetic survey completed by Expert Geophysics Limited (EGL).

The 2021 exploration program also included rock geochemistry, prospecting, and a soil geochemistry sampling program over the Vinson Lake target on the eastern portion of the Copperview North property.

7.1 MobileMT Airborne Geophysical Survey

The purpose of the MobileMT survey was to assist the mapping of bedrock structure and lithology, including possible alteration and mineralization zones, observing apparent conductivity corresponding to different frequencies, inverting EM data to obtain the distribution of resistivity with depth, and using VLF EM and magnetic data to study properties of the bedrock units. A total of 9 production flights were flown to complete 1072 line-kilometers of the survey over two blocks; with Copperview North presented by the "North Block" with **770 line-kilometers of the survey over a 155 sq.km area**.

The MobileMT survey was flown using a Eurocopter AS 350 B2 helicopter, registration C-GMHP, of the aviation company Mustang Helicopters. The survey production flights started on June 12, 2021, and data acquisition was completed on June 18, 2021. The survey operations were conducted from AP Ranch Guest Ranch in the Thompson-Nicola Regional District of British Columbia. The survey lines for both blocks are oriented N-S (90°N) at 200 m spacing, while tie lines are oriented in perpendicular direction to the survey lines and spaced at 2000 m.

Background information on the MobileMT survey follows below, courtesy of the Expert Geophysics Limited (EGL) website:

"Expert Geophysics Limited specializes in airborne geophysical surveys worldwide with advanced electromagnetic systems: Mobile MagnetoTellurics (MobileMT) is the most advanced generation of airborne AFMAG technology. MobileMT is the only system proven to deliver geoelectrical information from near-surface to greater than 1 km depth with high spatial resolution.

mTEM system advantages:

- Small footprint and high base frequency enable very high spatial resolution;
- Detail subsurface geoelectric characterization;
- Designed to work in areas with industrial electromagnetic noise (powerlines);

Tx loop

Tx unit pratform

Laser Allimater window

Conscie and Receiver platform

Rx loop

Ballast platform

22 m long bird

Rx and Tx loop diameter:

5 m each

System weight is about 300 kg

- Its light weight allows the mTEM system to deploy utilizing cost-effective light utility aircraft.

Figure 1- mTEM airborne EM system

The complete report by Expert Geophysics Limited (EGL)is included in Appendix D. In this report, and geophysical survey results are presented in the form of digital databases, maps, grids, sections, elevation slices and 3D voxels. The report describes the data acquisition, processing and inversion procedures, equipment and digital data specifications, basic data analysis.

7.1 Vinson Lake Area Field Activity

Based on a review of historic assessment work from the 1990's and the recent MobileMT geophysical survey indicative of a conductive anomaly, it was decided to complete a limited reconnaissance field program over the Vinson Lake area on the south-eastern portion of the Copperview North property. Between August 19 to 24, 2021, based from a motel in Merritt B.C., a four-man crew from Exploration Facilitation Unlimited Inc., completed prospecting work,

obtained *7 rock samples,* and collected 207 soil samples. The primary lithologies encountered during sampling were fine-grained mafic volcanic, moderately oxidized, with minor quartz veining and pyrite. The rock and soil geochemistry results are discussed under the Interpretation and Conclusions section of this report.

8.0 DRILLING

No drilling took place on the Copperview North property in 2021. To the best of the author's knowledge there has been no modern drilling completed on the Copperview North property.

9.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The 2021 rock samples were collected using a hammer from outcrops, talus, or boulders. Samples were placed in a poly ore bag with a sample tag marked with unique sample number also placed inside each sample bag and sealed with a cable tie. The site position was recorded using a handheld GPS receiver in UTM NAD83 Zone 10 format. Once taken, the samples were kept in a secure location while the program was still underway.

Soil samples were collected at a regional scale at 100-meter intervals along E-W lines that were widely spaced interval of 500-meters apart in the southeastern portion of the Copperview North Property. Soil samples were collected using a soil auger. Samples were laid out on a plastic bag and hand sifted to remove rocks, roots, and other organics before being classified, described, and put into a labelled Kraft sample bag. Location for each sample was recorded in a notebook as well as on a Garmin GPS. Description was recorded in a notebook and a ribbon marked with sample number, date, and sampler initials was tied to mark the location. Samples were stored in a locked motel room and were retrieved by the author who hand-delivered to ALS Canada Ltd. facility in North Vancouver.

Due to the reconnaissance nature of the 2021 exploration program, no standards or blanks were included into the sample stream. However, if a larger, follow-up sampling program is completed, it is recommended that prepackaged standards purchased from OREAS and sample

blanks made of dolomite purchased at a hardware store be inserted into the sample sets for QAQC procedures.

The 2021 rock and soil samples from the Copperview North Property were bagged in fiberglass sacks, with a unique security label and hand delivered to ALS Global - Geochemistry Analytical Lab in North Vancouver, BC, Canada (a division of ALS Canada Ltd.) for analysis. ALS Global - Geochemistry Analytical Lab is an International Standards Organization (ISO) 9001 Geochemical and assaying laboratory.

At ALS rock samples were dried and crushed to >70% passing a 2mm sieve with 250 g separated by rotary splitter. This split was pulverized until >85% passed a 75 micron sieve. From this a 25g final sample was split off and analyzed by ALS Lab's **AuME-TL43** process procedure. Au + multi-element packages use a single aqua regia digest on 25g charge weights, with Trace detection options. Gold, in conjunction with a large suite of base metal and pathfinder elements, are determined from the same solution via a combination of ICPMS ("Inductively Coupled Plasma Mass spectrometry") and ICP-AES.

Soil samples were also dried and were sieved to 180 microns. The remaining material had a 25 g aliquot split off and were also analyzed by ALS Lab's AuME-TL43 process procedure

Trace Level Detection Limits

AuME-TL43™ (25g sample) & AuME-TL44™ (50g sample) Analytes & Ranges (ppm)										
Au	0.001-1	Cs	0.05-500	Мо	0.05-10000	Sr	0.2-10000			
Ag	0.01-100	Си	0.2-10000	Na	0.01-10%	Ta	0.01-500			
Al	0.01-25%	Fe	0.01-50%	Nb	0.05-500	Te	0.01-500			
As	0.1-10000	Ga	0.05-10000	Ni	0.2-10000	Th	0.2-10000			
В	10-10000	Ge	0.05-500	Р	10-10000	Ti	0.005-10%			
Ва	10-10000	Hf	0.02-500	Pb	0.2-10000	Tl	0.02-10000			
Ве	0.05-1000	Hg	0.01-10000	Rb	0.1-10000	U	0.05-10000			
Bi	0.01-10000	In	0.005-500	Re	0.001-50	٧	1-10000			
Ca	0.01-25%	K	0.01-10%	S	0.01-10%	W	0.05-10000			
Cd	0.01-2000	La	0.2-10000	Sb	0.05-10000	Υ	0.05-10000			
Ce	0.02-10000	Li	0.1-10000	Sc	0.1-10000	Zn	2-10000			
Со	0.1-10000	Mg	0.01-25%	Se	0.2-1000	Zr	0.5-500			
Cr	1-10000	Mn	5-50000	Sn	0.2-500					

10.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

No environmental studies nor community engagements were completed during 2021 give the modest budget and early stage of exploration activity on the Copperview North property.

11.0 INTERPRETATION AND CONCLUSIONS

The exploration activities on the Copperview North property in 2021 resulted in significant anomalies that warrant further investigation. Highlights include:

MobileMT Geophysical Anomaly – "North CC" Target – Referring to Figures 8 and 9, this
 MobileMT geophysical anomaly is designated as "A" by our consulting geophysicist,
 Martin St. Pierre (internal company report 2021, Appendix F). This excerpt from his
 report:

"Anomaly A is located on the northwest side of the property. It is a north-south trending resistivity low that is inbounded by the survey block to the north. It is mostly coincident with elevated magnetic susceptibilities. We see the anomaly clearly on altitude slices from 1000 m to 200 m (Figures 1 to 10, Appendix D). On altitude slice 0 m (Figures 11 and 12, Appendix D) it is much weaker and disappears on altitude slice -200 m (Figures 13 and 14, Appendix D). Due to its elevated magnetic susceptibility coincidence and its limited depth extend anomaly A is considered as a moderate priority target."

The North "CC" target flanks the west side of Shrimpton Creek in an area of moderate topography and extensive overburden coverage. Despite it's good access by a series of logging roads the area appears not to have had much previous exploration and the target has not yet been investigated by the Company. Just off the property to the north-east of the target area is the Shrimpton Creek Placer Minfile occurrence, with the following description: "Shrimpton Creek flows southwest from its headwaters immediately south of The Wart for 10 kilometres. The creek continues south- southwest for 6 kilometres before entering Missezula Lake, 38.5 kilometres north of Princeton. Most of the creek flows through a broad, gently sloping valley, which steepens somewhat in the lower 4 kilometres. Particles of flat, well-worn, flaky gold, 1.5 to 3 millimetres in diameter, were recovered from unsorted glacial material. Most of the gold was found near surface. Material lying on or near bedrock was found to be

barren of gold. The creek was worked by F. Keeling in 1939, between 6.4 and 8 kilometres above Missezula Lake."

MobileMT Geophysical Anomaly – "Leonard Creek Target" – Also, referring to Figures 8 and 9, this MobileMT geophysical anomaly is designated as "B" and "C" by our consulting geophysicist, Martin St. Pierre (internal company report 2021). This excerpt from his report:

"Anomaly B is located on the northeast side of the property. It is a north-south trending resistivity low that is inbounded by the survey block to the north. It is mostly coincident with low magnetic susceptibilities. We see the anomaly clearly on all altitude slices (Figures 1 to 14 Appendix D). **Due** to its low magnetic susceptibility coincidence and its unlimited depth extent, anomaly B is considered as a moderate to high priority target.

Anomaly C is located immediately south of anomaly B. It is a semi-circular resistivity low. It is mostly coincident with low magnetic susceptibilities. We see the anomaly clearly on all altitude slices (Figures 1 to 14 Appendix D). Due to its low magnetic susceptibility coincidence, anomaly C is considered as a high priority target."

The Leonard Creek targets are located at higher elevations, covering several tributaries of Leonard Creek, and can be readily accessed by a network of logging roads. The Company has not yet investigated the target areas. Approximately 2.5 to 3.0 kilometers east of anomaly "B" (off the claims at the time of this report) a large copper-in soil anomaly has been indicated in assessment report (#22259), measuring approximately 500 by 600 meters, with values in excess of 100 ppm Cu in soils.

Vinson Lake Target – Copper -in -Soil Anomaly and MobileMT Anomaly "D" - referring
to Figure 18 indicates MobileMT geophysical anomaly is designated as "D" by our
consulting geophysicist, Martin St. Pierre (internal company report 2021). This excerpt
from his report:

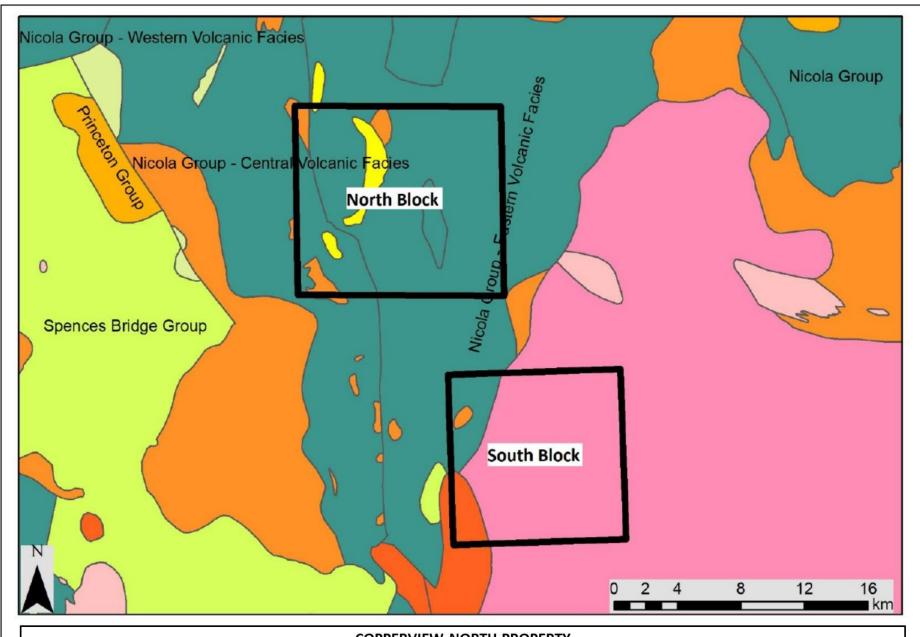
"Anomaly D is located in the southeast corner of the survey block. It is a northeast trending resistivity low that is coincident with low magnetic susceptibilities where a fault has been interpreted. It is unbounded by the survey block at each end. We see the anomaly clearly on altitude slices from 1000 m to 400m (Figures 1 to 8, APPENDIX D). By altitude slice 200 m

(Figures 9 and 10 Appendix D) in weakens significantly, and by altitude slice 0 m it had disappeared (Figures 11 and 12 Appendix D). **Due to its low magnetic susceptibility coincidence** and its limited depth extent anomaly E is considered as a moderate to high priority target."

The Vinson Lake area was also the location of anomalous soil geochemistry anomalies indicated by Fairfield in 1992 (Assessment Report #22259) and by recent 2021 soil geochemistry completed by the Company (refer to Vinson Compilation Map, Figure 18). Limited rock sampling returned only low values (Figures 11, 12, 13) but soil values had multiple anomalies for copper (+100 ppm Cu) with only limited and erratic correlation with gold and silver values (Figures 15, 16, 17). Completed multi-element assays for the rock and soil samples are included in Appendix C of this report (files separately).

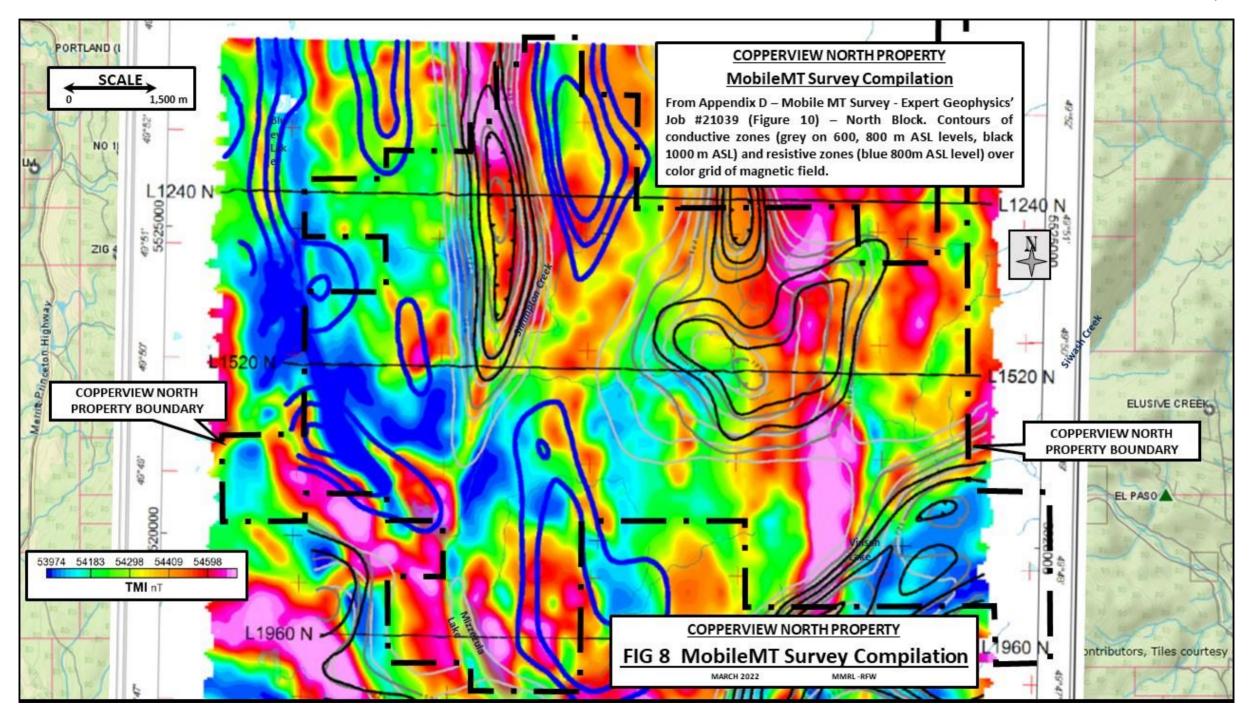
Kodiak Copper's MPD property located to the southwest of the Vinson Lake targets defined strongly anomalous copper-in-soil values of 100 to 200 ppm. Given the very wide line spacing (500 meters) and sample intervals, the Vinson Lake target with several values of 75 to +100 ppm Cu are valid copper-in-soil anomalies that warrant additional follow-up.

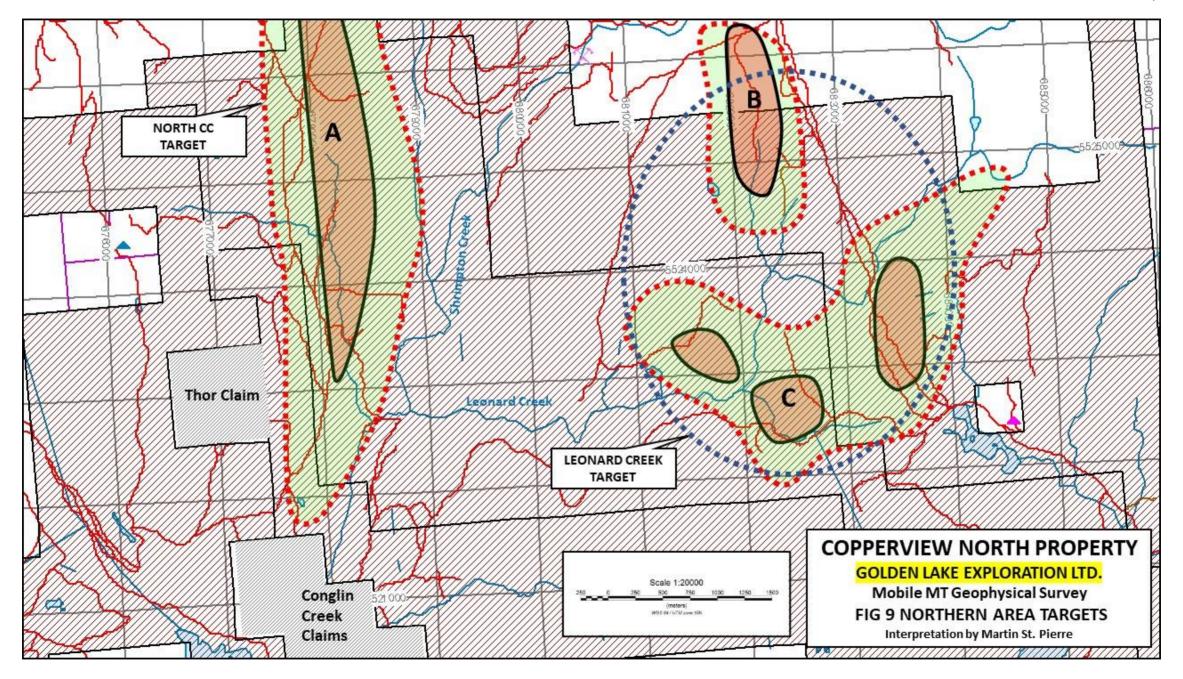
COPPERVIEW NORTH PROPERTY


FIG 5 MobileMT Survey Area Location. Block names from north to south: North Block, and South Block

MARCH 2022 MMRL -RFW

COPPERVIEW NORTH PROPERTY FIG 6 MobileMT Survey North block flight path

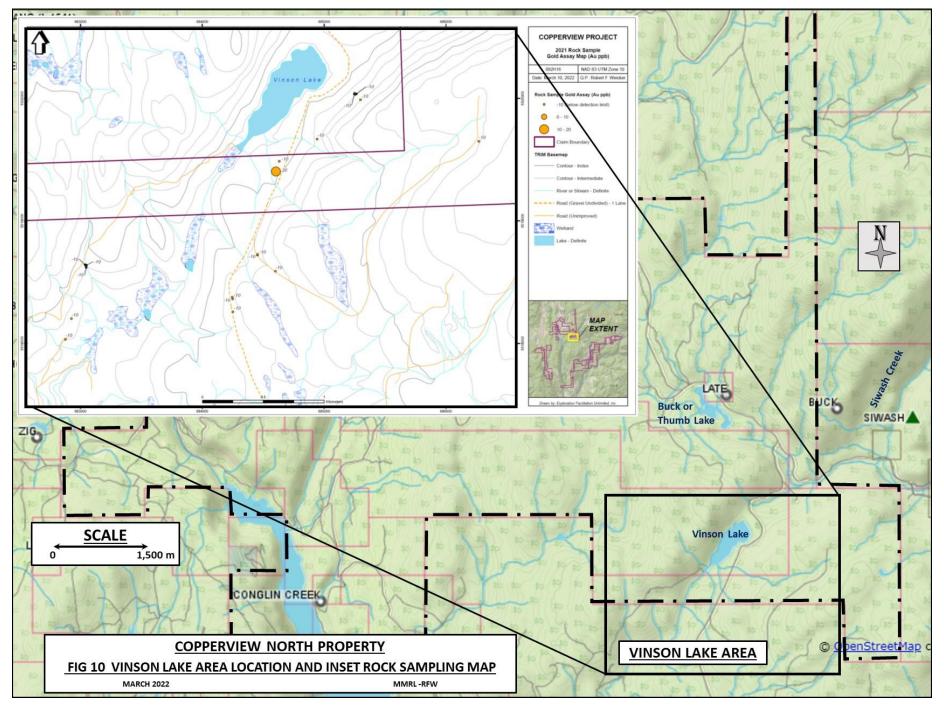

MARCH 2022 MMRL -RFW

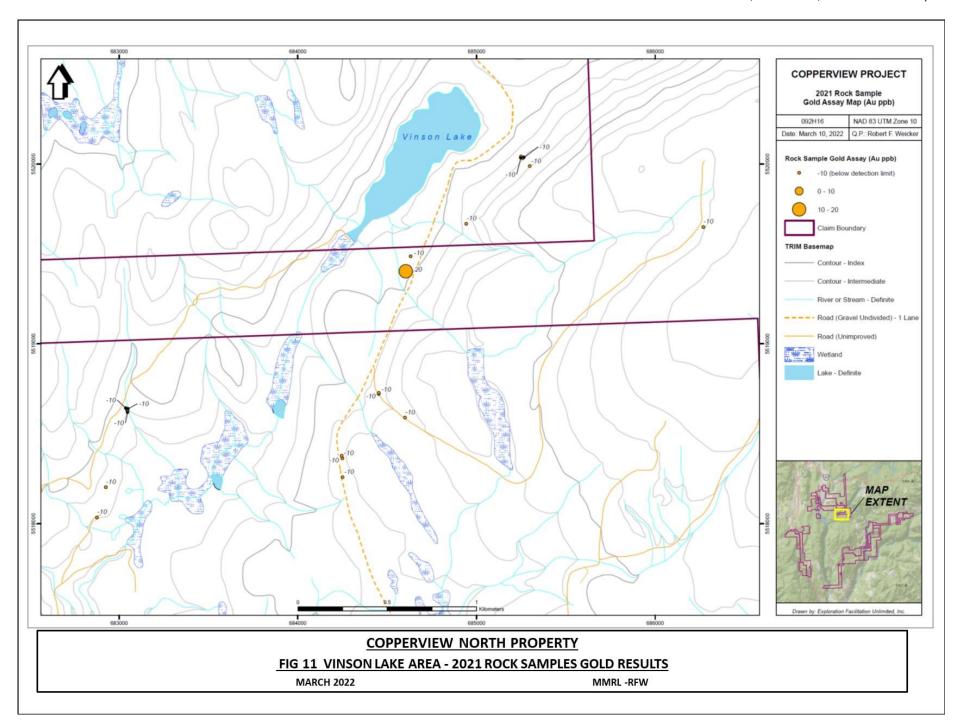


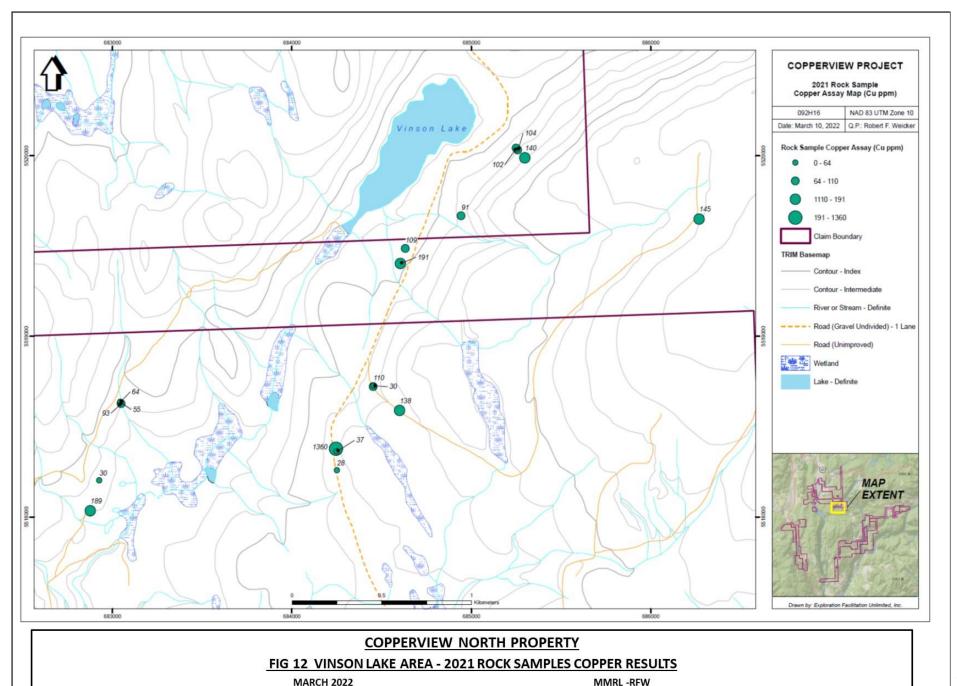
COPPERVIEW NORTH PROPERTY

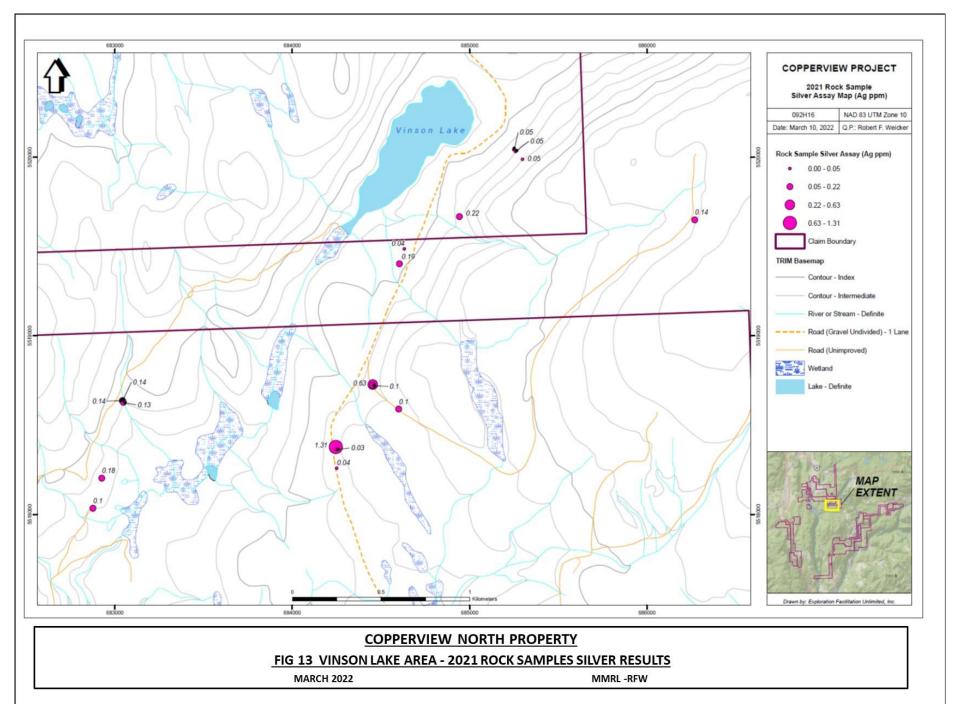
FIG 7 Regional geology surrounding MobileMT Survey Area

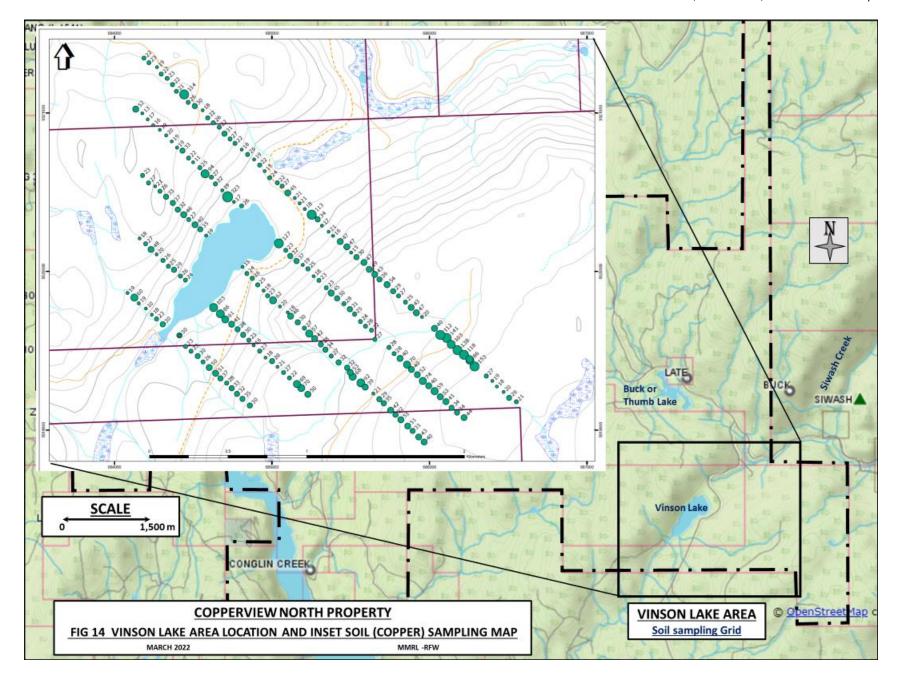
MARCH 2022 MMRL -RFW

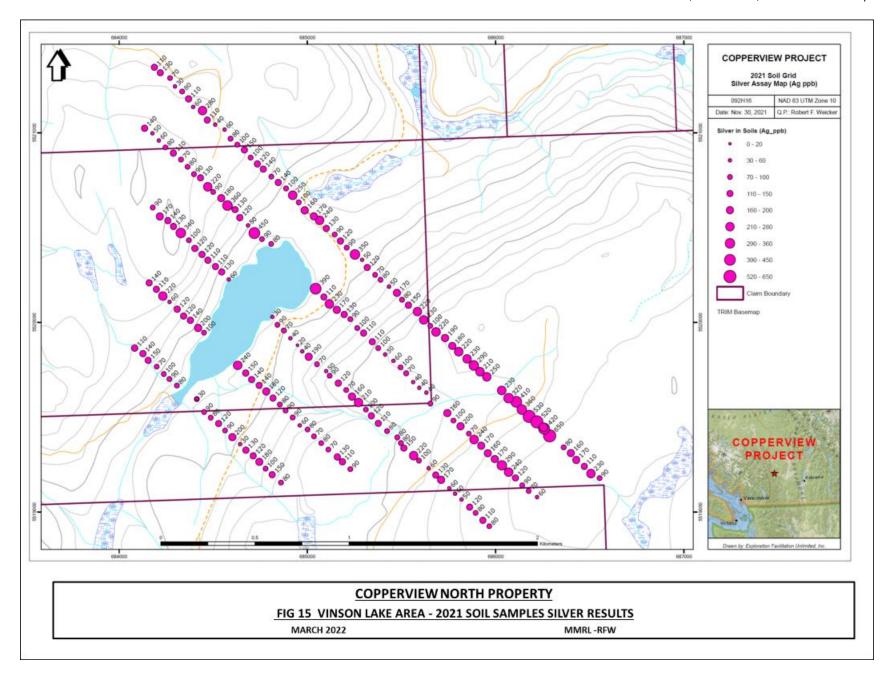


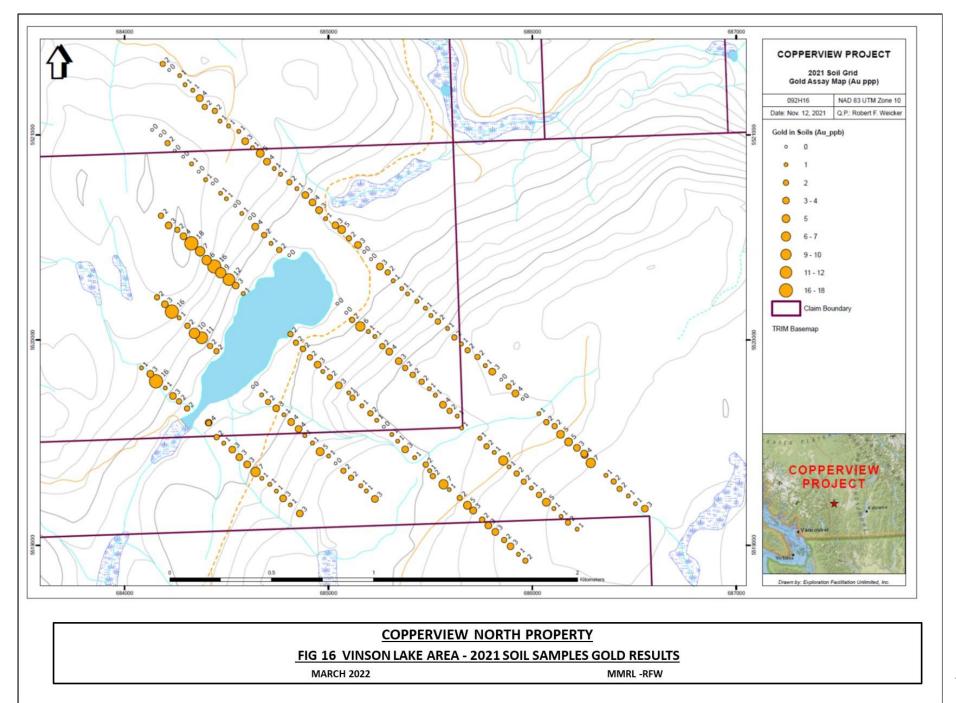


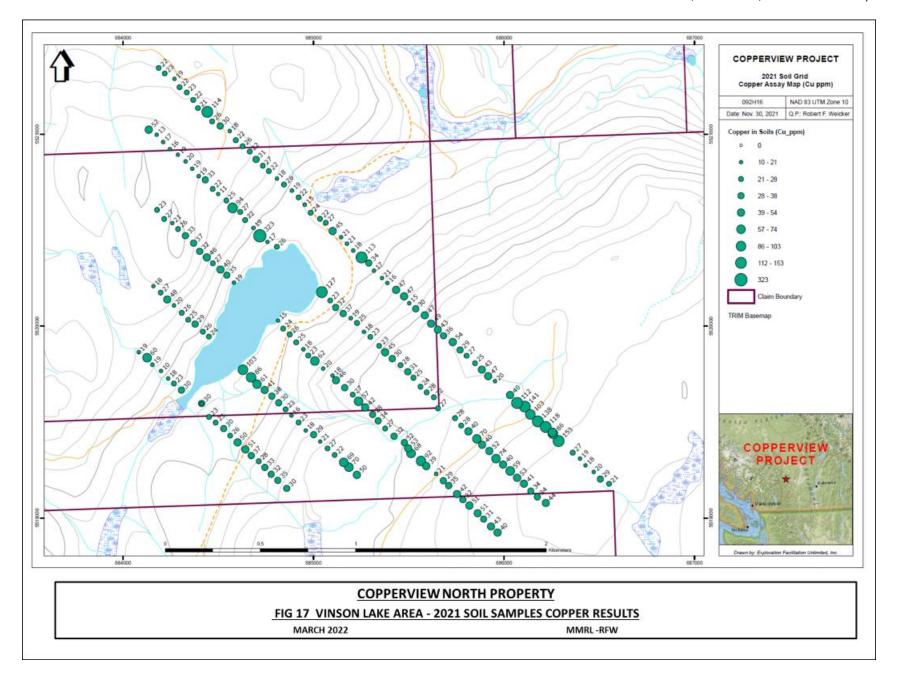

Sample#	Date	Easting	Northing	Sampled	Туре	Description	Au	ppb	Ag ppm	Cu	Pb	Zn	As
153401	2021-08-19	685299	5519988	CR CR	float	grey mafic volcanic boulder, << 1% py, some gossan and some qz crystals		0	0.05	ppm 139.5	ppm 1.8	ppm 68	ppm 1
153402	2021-08-19	684944	5519667	CR	float	float in cutblock, orange and silicified, gossan on surface, py and cp semi-massive <<1%		0	0.03	91.3	7.9	65	19
153403	2021-08-19	684250	5518362	CR	outcrop	edge of excavated pit, grey outcrop, gossanous with malachite << 1% py, purple qz veining		0	0.03	36.7	1	54	2
153404	2021-08-19	685260	5520031	AL	float	gossan on weathered surface and quartz vein, schist, py <<1%	2	0	0.05	104.0	3.4	59	5
153451	2021-08-19	685251	5520042	SG	float	float in cut block, silicified andesite, rust and gossan on weathered surface, fine- grained py disseminated		0	0.05	101.5	2.3	59	2
153452	2021-08-19	684247	5518377	SG	subcrop	silicified grey fine-grained mafic volcanic, gossan, malachite, located at roadside pit	5	0	1.31	1360.0	1.2	71	3
153453	2021-08-20	684605	5519403	SG	float	angular float in cutblock, silicified grey fine-grained mafic volcanic, gossan and hematite staining on weather surface, fine-grained silver-colored sulphide disseminated 2%		20	0.19	191.0	3	62	8
153454	2021-08-20	684632	5519486	SG	float	sub-angular float in cutblock, grey fine-grained mafic volcanic w qz veining, gossan patches on weathered and fractured surface, fine to medium-grained py disseminated 2%, medium-grained cp w stringers <1%	2	0	0.04	108.5	3	111	6
153455	2021-08-20	684252	5518257	SG	float	sub-angular float, light grey fine-grained intermediate, silicified, gossan and hematite staining, fine to medium-grained cp <1%	50	0	0.04	27.5	2	28	1
153456	2021-08-20	684453	5518721	SG	subcrop	sub-angular subcrop in road cut, fine-grained mafic volcanic, gossan, fine-grained py $<<1\%$		0	0.10	109.5	2	95	2
153457	2021-08-20	684455	5518726	SG	float	sub-angular float from road cut, silicified grey fine-grained mafic volcanic, fine- grained py disseminated 1%		0	0.63	29.6	7	149	9
153458	2021-08-20	684601	5518588	SG	float	sub-angular float, gossan, qz monzoninte?, fine-grained py disseminated 2%		0	0.10	137.5	8	2	8
153459	2021-08-20	686270	5519649	SG	float	sub-angular float in cutblock, gossan, fine-grained grey mafic volcanic, medium- grained cp and py disseminated 2%		0	0.14	144.5	1	144	1
153460	2021-08-21	683043	5518634	SG	outcrop	fine-grained mafic volcanic, silicified, gossan, very fine-grained py disseminated 5%		0	0.14	63.9	4	40	8
153461	2021-08-21	683043	5518637	SG	outcrop	fine-grained mafic volcanic, silicified, gossan and hematite, very fine-grained py disseminated 5%		0	0.14	54.8	4	41	8
153462	2021-08-21	683048	5518627	SG	subcrop	fine-grained mafic volcanic, silicified, gossan and hematite, very fine-grained py disseminated 2%		0	0.13	93.3	4	42	11
153463	2021-08-21	682926	5518201	SG	float	sub-angular fine-grained intermediate, silicified, gossan, qz-cb veining, fine- grained py disseminated 5%	200	0	0.18	29.9	10	52	51
153464	2021-08-21	682877	5518033	SG	float	angular fine-grained mafic volcanic boulder, silicified, gossan, qz veining, fine- grained py disseminated 2%		0	0.10	189.0	4	81	10

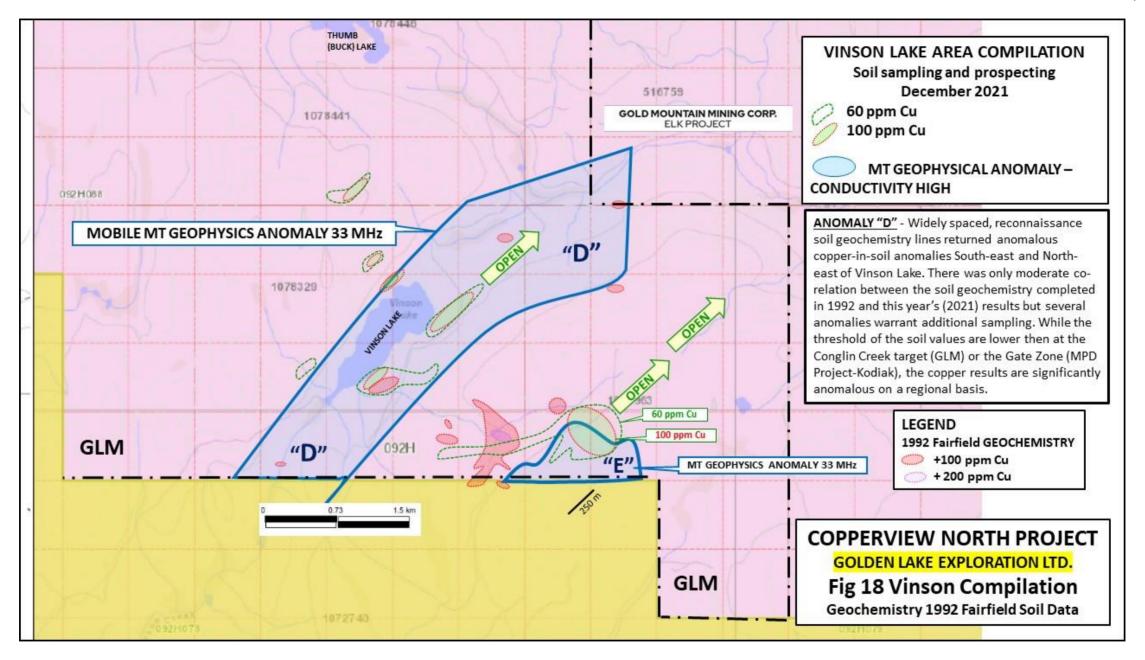

COPPERVIEW NORTH PROPERTY


TABLE 2 – ROCK SAMPLE RESULTS – VINSON LAKE TARGET









12.0 RECOMMENDATIONS

It is the author's opinion that, the Copperview North property is a property of merit and warrants additional exploration activities. The 2021 program returned encouraging results with several MobileMT airborne geophysical anomalies and on the Vinson Lake target, coincident soil geochemistry anomalies. Future work at the Copperview North property include:

- "North CC Target" This MobileMT geophysical target area has not been visited. Prospecting, geological mapping, and rock and soil geochemistry, are recommended, followed by Induced Polarization geophysics if initial results are positive. As this target is in an area of low to moderate topographic, on the west flank of the Shrimpton Creek drainage, it is anticipated that outcrop exposure may be fairly limited. In addition, the government geology maps indicate a large, elongated lenses of Pleistocene to Holocene alkaline volcanic rocks covering this area, masking the source of the magnetic and conductivity anomalies.
- Leonard Creek Target this is a very large target area, defined by multiple MobileMT anomalies. Initial recommended work includes prospecting and reconnaissance mapping, and rock sampling. A more detailed review of soil and stream geochemistry from the 1990s is recommended, with entry into a data base. East of anomaly B a strong copper-in-soil anomaly (now part of the Copperview North property) should be investigated with soil geochemistry completed over the geophysical target areas.
- Vinson Lake Target This target area is defined by a north-east trending MobileMT geophysical anomaly and multiple copper-in-soil anomalies defined by the 2021 sampling and supporting soil geochemistry completed in the 1990s. To date, sampling has been very widely spaced (500-meter lines, 100 m intervals) and it is recommended to complete infill soil sampling to better define the targets. Rock sampling to date has not returned significant values but geological mapping and additional sampling is warranted. The Vinson Lake geophysical target may be more structurally controlled and does not appear near the surface. An Induced Polarization survey should be considered if mapping and sampling are encouraging. Prospecting with an XRF analyzer may be useful (for copper values) on the soil samples and a pilot program is recommended.

13.0 REFERENCES

Barr, D.A., Fox, P.E., Northcote, K.E., and Preto, V.A., 1976. The Alkaline Porphyry Deposits – A Summary; in CIM Special Vol. No. 15.

Cormier, J. 1992 Geochemical Report on the Vin Property, for Fairfield Minerals Inc., B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 22259.

Dawson, J. M., 1983, Geochemical Report on the Josee #2 Claim, B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 11373.

Hainsworth, W.G., 1973, Report on the Work Carried Out on the Miss Claims for M.M. Mathieu, B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 4694

Leishman, D. A., 1984 Geological Report on the Josee #2 Claim, B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 12351.

Lisle, T. L., 1985, Geological and Geochemical Report on the BLOO, CLIMAX, THOR, AND THOR 2 TO 16 MINERALS CLAIMS, et.al, for Vanco Exploration Ltd., B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 14141.

St. Pierre, M, 2021, Copperview South Property – MobileMT Interpretation, Internal Company Report for Golden Lake Exploration Inc., by consulting geophysicist, M. St. Pierre.

Murton, J. W. 2014, 2014 Assessment Report on the 2013 Diamond Drilling Program MAN PRIME PROPERTY, for Sunrise Resources Inc., B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 34889.

Preto, V.A., 1975. Notes to Accompany Preliminary Maps No. 17. Geology of the Allison Lake – Missezula Lake Area. B.C. MEMPR

St. Pierre, M, 2021, Copperview South Property – MobileMT Interpretation, Internal Company Report for Golden Lake Exploration Inc., by consulting geophysicist, M. St. Pierre.

Watson, I.M., 1988, Exploration Report on the Sadim Property Sadim 1-6 Claims. B.C. Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 16889.

14.0 STATEMENT OF QUALIFICATION

- 1. I, Robert F. Weicker of Suite 2801, 1166 Melville St., Vancouver, B.C. V6E 4P5, am a self-employed consultant geologist through my consulting company, Multiple Metals Resources Ltd., and I authored and am responsible for this report entitled "REPORT ON GEOCHEMISTRY AND GEOPHYSICS ACTIVTIES 2021 ON THE COPPERVIEW NORTH PROPERTY", dated March 12, 2022. I also am responsible for the revisions on this report, dated November 30, 2022.
- 2. I am a graduate of the University of Waterloo, Waterloo, Ontario with an Honours Bachelor's Degree in Earth Science (1977). I have more than 35 years mineral exploration, development, and production experience, working with major and junior mining companies both domestically and internationally.
- 3. I have been a registered member of the Association of Professional Engineers and Geologist of British Columbia (APEGBC) in the past, but I am currently retired from APEGBC, and not a member, since 2011.
 - 4. I have visited the subject mineral property of this report.
- 5. This report is based upon work completed from June to December 2021, and the author's personal knowledge of the region and a review of additional pertinent data.
- 6. As stated in this report, in my professional opinion the property is of potential merit and further exploration work is justified.
- 7. To the best of my knowledge this report contains all scientific and technical information required to be disclosed so as not to be misleading.
- 8. At the time of the original report, I held one claims on behalf of Golden Lake Exploration Inc., but I have no interest in the property and all interests in the property are owned by Golden Lake. My professional relationship is as a non-arm's length consultant, and I have no expectation that this relationship will change.
- 9. I consent to the use of this report by Golden Lake Exploration Inc., for such assessment and/or regulatory and financing purposes deemed necessary, but if any part shall be taken as an excerpt, it shall be done only with my approval.

Signed, "Robert Weicker", dated at Vancouver, March 14th, 2022.

BRITISH COLUMBIA The Best Place on Earth

REVISED REPORT NOVEMBER 30. 2022

Ministry of Energy and Mines BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: GEOCHEMISTRY, GEOPHYSICS 2021 SURVEYS TOTAL COST: \$148,458 AUTHOR(S): ROBERT WEICKER SIGNATURE(S): NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): NA YEAR OF WORK: 2021 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5856156 PROPERTY NAME: COPPERVIEW NORTH PROPERTY CLAIM NAME(S) (on which the work was done): SIWASH WEST 1000, MISSEZULA 2020, MISSEZULA 2020 -2, NICOLA 1000, NICOLA 5000, CONGLIN, THOR, THOR 2, CONGLIN 2, CONGLIN 3, 1073033, MIZZEZULA LAKE CONNECTOR, SIWASH NORTH COMMODITIES SOUGHT: COPPER, GOLD MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: JOSEE 092HNE249, CONGLIN CREEK 092HNE132 MINING DIVISION: Nicola NTS/BCGS: NTS 092H15E, BCGS 092H078 LONGITUDE: 120 LATITUDE: (at centre of work) OWNER(S): 1) D.J. Rippon (FMC 137109) 2) R.F. Weicker (FMC 128515) J.C, Bot (FMC 102844) MAILING ADDRESS: 33 – 590 17th Street, West Vancouver, BC V7V 3S7 Suite 2801, 1166 Melville St., Vancouver, BC, V6E 4P5 Box 4373, Quesnel, BC, V2J 3J4 OPERATOR(S) [who paid for the work]: 1) GOLDEN LAKE EXPLORATION INC. 2) MAILING ADDRESS: 1240 - 789 Pender St W Vancouver BC CANADA V6C 1H2 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): Upper Triassic, Nicola Group, Eastern volcanic facies, Andesitic Basaltic Flow, Andesite, Basalt, Pyroclastic, Monzonite, Syenite Deposit Classification - Porphyry, Hydrothermal, Epigenetic Deposit Type - L03: Alkalic porphyry Cu-Au REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: EMPR ASS RPT *4694, *14141 EMPR ASS RPT 11373, 12351

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres) Ground			
Magnetic			
Induced Polarization			
Radiometric			
Other			
Airborne 770 Km Mobile MT		All claims liste above	\$120,355.35
GEOCHEMICAL (number of samples analysed for)			4
Soil 207		CONGLIN 2, CONGLIN 3,	\$26,920.00
Silt			
Rock18		CONGLIN 2, CONGLIN 3,	\$1,183.00
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
(scale, area)		-	
Legal surveys (scale, area)		-	
Road, local access (kilometres)/t			
Trench (metres)			
Underground dev. (metres)		-	
Other		_	
		TOTAL COST:	\$148,458

APPENDICES ON GEOCHEMISTRY AND GEOPHYSICS ACTIVTIES 2021 ON THE COPPERVIEW NORTH PROPERTY

Report Year: 2021

Report Dated March 14, 2022

REVISED NOVEMBER 30, 2022

SOW Event Number 5856156 December 14, 2021

CLAIM NAMES: SIWASH WEST 1000, MISSEZULA 2020, MISSEZULA 2020 -2, NICOLA 1000, SIWASH NORTH, NICOLA 5000, CONGLIN. THOR, THOR 2, CONGLIN 2, CONGLIN 3, 1073033, MIZZEZULA LAKE CONNECTOR

COMMODITIES SOUGHT: Gold, Copper

MINERAL INVENTORY MINFILE NUMBERS: 092HNE132/092HNE249

MINING DIVISION: Nicola

NTS / BCGS: 092H15E (NTS) / 092H078 (BCGS) / 092H10E

LATITUDE: 049° 47′ 46" N **LONGITUDE:** 120° 31′ 28" W

UTM Zone: NAD83 10 **EASTING:** 678156 **NORTHING**: 5518902

OPERATOR: Golden Lake Exploration Inc.

Suite 1240 - 789 Pender St W Vancouver BC CANADA V6C 1H2

PREPARED BY: Robert Weicker

Suite 2801 – 1166 Melville St.

Vancouver, British Columbia V6E 4P5

March 14, 2022

APPENDIX A

Expenditures

Exploration Work type	Y, MERRITT, BC - <u>AMENDED NO</u> Comment	Days			Totals
- 160 Nt / 5 III					
Personnel (Name)* / Position	Field Days (list actual days)	Days		Subtotal*	
			\$0.00		
			\$0.00		
			\$0.00		
			\$0.00		
Steve Gillanders Manager	August 19-24, 2021	6	\$735	\$4,410.00	
Alain Laurencelle geotech	August 19-24, 2021	6	\$499	\$2,992.50	
Curtis Rensby geotech	August 19-24, 2021	6	\$499	\$2,992.50	
			\$0.00	\$0.00 \$10,395.00	\$10,395.00
Office Chadica	List Davis and (mate Office or		at in almal.		\$10,393.00
Office Studies	List Personnel (note - Office or	ily, ao r			
Literature search	C. C.II I CTC	0.4	\$0.00		
Database compilation	Steve GillandersGIS	0.4			
Computer modelling			\$0.00		
Reprocessing of data			\$0.00		
General research			\$0.00		
Report preparation	RF Weicker -December 1-4, 2021	4.0	\$735.00	\$2,940.00	
Other (specify) Geophyisics	Martin -St. Pierre July 2021 -North Block - <i>APPENDIX F</i>	2.1	\$1,260.04	\$2,677.59	
A' la care de alta d				\$5,796.09	\$5,796.09
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced an	nount			
Aeromagnetics			\$0.00		
Radiometrics			\$0.00		
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)	Mobile MT Airborne Survey -Expert Geophysics- 770 line kms	770.0	\$152.83	\$117,677.76	
	7-1-7			\$117,677,76	\$117,677.76
Remote Sensing	Area in Hectares / Enter total invoiced a	mount or	list personne		. , ,
Aerial photography	,		\$0.00		
LANDSAT			\$0.00		
Other (specify)			\$0.00		
Other (Speeny)			Ψ0.00	\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional		note: ex	penditures	here	
Reconnaissance			•	l in Personnel	
Prospect			penditures a		
Underground	Define by length and width	neia exp	Chartares	above	
Trenches	Define by length and width			\$0.00	\$0.00
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amount inv	oiced list _l	ersonnel		
Radiometrics					
Magnetics					
Gravity					
Other (specify)				\$0.00	\$0.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	φυ.ου
Drill (cuttings, core, etc.)	sor or outspice		\$0.00	\$0.00	
Stream sediment			\$0.00	·	
Soil	ALS Laboratorios -Soil	207.0			
	ALS Laboratories -Soil	207.0			
Rock	ALS Laboratories -Rock	7.0	<i>\$130.16</i>	\$911.11	
Petrology	Collana Analysis VEO		\$0.00	\$0.00	
Other (specify)	SciApps Analyzer X50, - Exploration - Billed to three projects (33%)			\$0.00	
				\$9,911.23 Subtotal	\$9,911.23
Drilling	No. of Holes, Size of Core and Metres	No.	Rate		

Reclamation	Clarify	No.	Rate	Subtotal	
After drilling			\$0.00	\$0.00	
Monitoring			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
Transportation		No.	Rate	Subtotal	
Airfare		3.00	\$152.19	\$456.58	
Taxi			\$0.00	\$0.00	
truck rental - August 2021	August 19-24, 2021	6.00	\$210.00	\$1,260.00	
truck rental			\$0.00	\$0.00	
kilometers			\$0.00	\$0.00	
ATV			\$0.00	\$0.00	
fuel	August 19-24, 2021-Merritt	2.00	\$110.78	\$221.56	
Helicopter (hours)			\$0.00	\$0.00	
Fuel (litres/hour)			\$0.00	\$0.00	
Other					
				\$1,938.14	\$1,938.14
Accommodation & Food	Rates per day				
Hotel			\$0.00	\$0.00	
Camp			\$0.00	\$0.00	
Meals	Meals Per diem August 19-24	18.00	\$105.00	\$1,890.00	
				\$1,890.00	\$1,890.00
Miscellaneous					
Telephone			\$0.00	\$0.00	
Other (Specify)					
				\$0.00	\$0.00
Equipment Rentals					
Field Gear (Specify) August 2021	Tires, sample bags, tools, equipment			\$ 562.38	
Field Gear (Specify) Aug 2021	radio rental	6.00	\$8.75	\$52.50	
Other (Specify) Aug 2021	Inreach Emergency Locator			\$105.00	
				\$719.88	\$719.88
Freight, rock samples					
Handling Charges EFU			\$0.00	\$130.25	
				\$130.25	\$130.25
North Copperview TOTAL	Expenditures				\$148,458.35

APPENDIX B - COPPERVIEW NORTH

RECORD DATE: DECEMBER 14, 2021

STATEMENT OF WORK – EVENT 5856156

AMENDED TENTURE SUMMARY

Event Number:	5856156	ORIGINAL						
Work Type:	Technical	Technical Items:	Geochemical.	Geological, Pros	pecting			
Work Start:	2021/JUN/01		,					
Work Stop:	2021/DEC/14							
Total Value \$:	\$164,100.00							
	¥ 20.,200.00							
			Old Good to	New Good to	# of Days		Applied Work	Submision
Title Number	Claim Name	Issue Date	Date	Date	Forward	Area in HA	Value	Fee
1076972	SIWASH WEST 100	2020/JUN/26	2021/JUN/26	2023/JUN/23	730	166.85	\$1,668.59	\$0.00
1078260	MISSEZULA 2020	2020/AUG/29	2021/AUG/29	2023/AUG/29	730	1042.10	\$10,420.99	\$0.00
1078329	MISSEZULA 2020-2	2020/SEP/03	2021/SEP/03	2024/SEP/03	1096	1209.19	\$24,183.74	\$0.00
1078441	NICOLA 1000	2020/SEP/05	2021/SEP/05	2024/SEP/05	1096	2083.83	\$41,676.65	\$0.00
1078446	NICOLA 5000	2020/SEP/05	2021/SEP/05	2024/SEP/05	1096	2083.83	\$41,666.21	\$0.00
1064748	CONGLIN	2018/NOV/29	2021/NOV/29	2024/NOV/29	1096	20.86	\$729.94	\$0.00
1064749	THOR	2018/NOV/29	2021/MAY/29	2025/JAN/15	1692	104.29	\$4,635.31	\$0.00
1064750	THOR 2	2018/NOV/29	2021/MAY/29	2025/JAN/15	1692	187.72	\$8,343.22	\$0.00
1067566	CONGLIN 2	2019/MAR/30	2020/SEP/30	2025/SEP/30	1826	166.83	\$8,348.19	\$0.00
1072754	CONGLIN 3	2019/NOV/16	2020/NOV/16	2024/NOV/16	1461	229.34	\$6,880.29	\$0.00
1073033	CONSENTS	2019/NOV/10 2019/DEC/01	2020/NOV/10 2020/DEC/01	2025/DEC/01	1826	83.36	\$3,751.24	\$0.00
1078519	ZEZULA LAKE CONNECT	2020/SEP/08	2021/SEP/08	2024/SEP/08	1096	20.86	\$417.21	\$0.00
1076963	SIWASH NORTH	2020/JUN/26	2021/JUN/26	2024/JUN/23	1096	563.05	\$11,260.99	\$0.00
1070303	SIWASITIVORITI	2020/3014/20	2021/3014/20	2024/3011/23	1030	303.03	\$163,982.57	Ç0.00
Original Wk \$	\$164,100.00						\$105/302.57	
Original Submit \$	\$163,982.57							
PAC - RFW	\$117.43							
THE RIW	7117.43							
Event Number:	5856156	AMENDED						
Work Type:	Technical	Technical Items:	Geochemical,	Geological, Pros	pecting			
Work Start:	2021/JUN/01							
Work Stop:								
Work Stop: Total Value \$:	2021/DEC/14							
Work Stop: Total Value \$:								
Total Value \$:	2021/DEC/14 \$0.00		Old Good to	New Good to	# of Days		Applied Work	Submision
•	2021/DEC/14	Issue Date	Old Good to Date	New Good to	# of Days	Area in HA	Applied Work Value	Submision Fee
Total Value \$:	2021/DEC/14 \$0.00	Issue Date				Area in HA		
Total Value \$: Title Number	2021/DEC/14 \$0.00 Claim Name		Date	Date 2023/JUN/23	Forward		Value	Fee
Total Value \$: Title Number 1076972	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100	2020/JUN/26 2020/AUG/29	Date 2021/JUN/26 2021/AUG/29	Date 2023/JUN/23 2023/AUG/29	Forward 730	166.85	Value \$1,668.59	Fee \$0.00
Total Value \$: Title Number 1076972 1078260	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020	2020/JUN/26	Date 2021/JUN/26	Date 2023/JUN/23	730 730	166.85 1042.10	Value \$1,668.59 \$10,420.99	Fee \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2	2020/JUN/26 2020/AUG/29 2020/SEP/03	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01	730 730 854	166.85 1042.10 1209.19	Value \$1,668.59 \$10,420.99 \$18,843.90	Fee \$0.00 \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329 1078441	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01	730 730 730 854 852	166.85 1042.10 1209.19 2083.83	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63	Fee \$0.00 \$0.00 \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329 1078441 1078446	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01	730 730 730 854 852 1061	166.85 1042.10 1209.19 2083.83 2083.83	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27	\$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15	Forward 730 730 854 852 1061 1096 1692	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329 1078441 1078446 1064748	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15 2025/JAN/15	Forward 730 730 854 852 1061 1096 1692	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29 2020/SEP/30	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15	Forward 730 730 854 852 1061 1096 1692 1826	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566 1072754	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30 2024/NOV/16	Forward 730 730 854 852 1061 1096 1692 1692 1826 1461	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83 229.34	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19 \$6,880.29	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Total Value \$: Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30 2019/NOV/16 2019/DEC/01	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29 2020/SEP/30 2020/NOV/16	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30	Forward 730 730 854 852 1061 1096 1692 1826	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566 1072754 1073033	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2 CONGLIN 3	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30 2019/NOV/16	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29 2020/SEP/30 2020/NOV/16 2020/DEC/01	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30 2024/NOV/16 2025/DEC/01	Forward 730 730 854 852 1061 1096 1692 1826 1461 1826	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83 229.34 83.36	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19 \$6,880.29 \$3,751.24 \$417.21	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566 1072754 1073033 1078519	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2 CONGLIN 3 ZEZULA LAKE CONNECT	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30 2019/NOV/16 2019/DEC/01 2020/SEP/08	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29 2020/SEP/30 2020/NOV/16 2020/DEC/01 2021/SEP/08	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/AUG/01 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30 2024/NOV/16 2025/DEC/01 2024/SEP/08	Forward 730 730 854 852 1061 1096 1692 1826 1461 1826 1096	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83 229.34 83.36 20.86	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19 \$6,880.29 \$3,751.24 \$417.21 \$11,260.99	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566 1072754 1073033 1078519	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2 CONGLIN 3 ZEZULA LAKE CONNECT	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30 2019/NOV/16 2019/DEC/01 2020/SEP/08	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29 2020/SEP/30 2020/NOV/16 2020/DEC/01 2021/SEP/08	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/JAN/05 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30 2024/NOV/16 2025/DEC/01 2024/SEP/08 2024/JUN/23	Forward 730 730 854 852 1061 1096 1692 1826 1461 1826 1096	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83 229.34 83.36 20.86	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19 \$6,880.29 \$3,751.24 \$417.21	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566 1072754 1073033 1078519	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2 CONGLIN 3 ZEZULA LAKE CONNECT	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30 2019/NOV/16 2019/DEC/01 2020/SEP/08	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29 2020/SEP/30 2020/NOV/16 2020/DEC/01 2021/SEP/08 2021/JUN/26	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/JAN/01 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30 2024/NOV/16 2025/DEC/01 2024/SEP/08 2024/JUN/23 \$148,458.35	Forward 730 730 854 852 1061 1096 1692 1826 1461 1826 1096	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83 229.34 83.36 20.86	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19 \$6,880.29 \$3,751.24 \$417.21 \$11,260.99	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Title Number 1076972 1078260 1078329 1078441 1078446 1064748 1064749 1064750 1067566 1072754 1073033 1078519	2021/DEC/14 \$0.00 Claim Name SIWASH WEST 100 MISSEZULA 2020 MISSEZULA 2020-2 NICOLA 1000 NICOLA 5000 CONGLIN THOR THOR 2 CONGLIN 2 CONGLIN 3 ZEZULA LAKE CONNECT	2020/JUN/26 2020/AUG/29 2020/SEP/03 2020/SEP/05 2020/SEP/05 2018/NOV/29 2018/NOV/29 2018/NOV/29 2019/MAR/30 2019/NOV/16 2019/DEC/01 2020/SEP/08	Date 2021/JUN/26 2021/AUG/29 2021/SEP/03 2021/SEP/05 2021/SEP/05 2021/NOV/29 2021/MAY/29 2021/MAY/29 2020/SEP/30 2020/NOV/16 2020/DEC/01 2021/SEP/08 2021/JUN/26 Amend Wk \$	Date 2023/JUN/23 2023/AUG/29 2024/JAN/01 2024/JAN/01 2024/JAN/01 2024/NOV/29 2025/JAN/15 2025/JAN/15 2025/SEP/30 2024/NOV/16 2025/DEC/01 2024/SEP/08 2024/JUN/23 \$148,458.35	Forward 730 730 854 852 1061 1096 1692 1826 1461 1826 1096	166.85 1042.10 1209.19 2083.83 2083.83 20.86 104.29 187.72 166.83 229.34 83.36 20.86	Value \$1,668.59 \$10,420.99 \$18,843.90 \$32,398.27 \$40,335.63 \$729.94 \$4,635.31 \$8,343.22 \$8,348.19 \$6,880.29 \$3,751.24 \$417.21 \$11,260.99	Fee \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00

APPENDIX C1

COPPERVIEW NORTH PROPERTY

ASSAY CERTIFICATES – ROCK SAMPLES

NOTE: These results are in the public domain.

To: GOLDEN LAKE EXPLORATIONS LTD. **SUITE 2801** 1166 MELVILLE ST. VANCOUVER BC V6E 4P5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2021

Account: GOLARO

CERTIFICATE VA21223601

Project: Deadman Lake Project This report is for 18 samples of Rock submitted to our lab in Vancouver, BC, Canada on 24-AUG-2021. The following have access to data associated with this certificate: ROBERT WEICKER

	SAMPLE PREPARATION								
ALS CODE DESCRIPTION									
WEI-21	Received Sample Weight								
CRU-21	Crush entire sample								
LOG-22 Sample login – Rcd w/o BarCode									
CRU-QC	Crushing QC Test								
PUL-QC	Pulverizing QC Test								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample – riffle splitter								
PUL-31 Pulverize up to 250g 85% <75 um									

ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT							
ME-MS41	Ultra Trace Aqua Regia ICP-MS	_							

This is the Final Report and supersedes any preliminary report with this certificate number Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2021 Account: GOLARO

(ALS	,								(CERTIFI	CATE O	F ANAL	YSIS	VA2122	23601	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0,02	ME-MS41 Co ppm 0,1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0,05
153401 153402 153403 153404 153451		1.08 1.36 1.24 0.72 0.84	0.05 0.22 0.03 0.05 0.05	1.72 0.43 0.99 1.15 2.86	1.1 18.5 2.4 4.7 2.3	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	10 <10 <10 10 <10	70 280 30 320 120	0.41 0.31 0.34 0.37 0.16	0.01 0.31 0.03 0.09 0.03	1.31 3.00 2.34 6.43 4.06	0.06 0.25 0.03 0.20 0.05	11.05 17.80 14.45 13.80 5.87	19.2 7.2 8.5 23.9 18.3	10 8 5 44 33	0.40 2.64 0.70 10,25 0.14
153452 153453 153454 153455 153456		1.34 1.60 0.94 0.82	0.19 0.04 0.04 0.10	4.96 2.39 0.54 2.19	7.6 6.3 1.3 1.7	0.02 <0.02 <0.02 <0.02 <0.02	20 <10 <10 <10	80 490 80 130	1.78 0.50 0.24 0.39	0.71 0.70 0.04 0.03	7.23 1.85 0.32 1.18	0.07 0.09 0.03 0.08	15.00 13.15 13.80 17.15	17.7 29.8 4.6 19.6	13 25 6 9	0.31 0.81 4.38 2.22
153458 153459 153460 153461		1.04 0.34 1.56 1.24 1.38	0.63 0.10 0.14 0.14 0.14	2.64 2.00 2.15	8.3 1.3 7.8 8.4	<0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 10	100 150 70 80	0.23 <0.05 0.37 0.14 0.15	0.02 0.04 0.22 0.05 0.05	2.06 0.05 2.39 1.59 1.47	0.12 0.02 0.08 0.12 0.10	3.61 0,54 25.7 3.25 3.59 3.27	11.2 11.7 25.3 18.2 16.3	7 8 17 17	0,09 1,26 0,97 1,20
153462 153463 153464		0,34 0,76	0.18 0.10	1,72 2,07	50.6 10.1	<0,02 <0,02	<10 10	70 610	0,31 0,55	0,08 0,05	1,26 2,95	0,22 0,18	4,93 18,60	19,4 21,5	37 5	0.14 1.13

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2021 Account: GOLARO

(ALS	,								(CATE O	F ANAL	YSIS	VA2122	23601	
Sample Description	Method Analyte Units LOD	ME-MS41 Cu ppm 0,2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0,005	ME-MS41 K % 0.01	ME-MS41 La ppm 0,2	ME-MS41 Li ppm 0,1	ME-MS41 Mg % 0.01	ME–MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0,01	ME-MS41 Nb ppm 0,05
153401 153402 153403 153404 153451		139.5 91.3 36.7 104.0 101.5	5.18 2.88 3.26 5.24 4.19	8.05 1.26 6.36 6.67 6.96	0,13 <0.05 0.13 0,08 0,10	0.19 0.15 0.29 0,19 0.30	<0.01 0.22 0.01 0.01 0.04	0.017 0.043 0.020 0.044 0.012	0.10 0.21 0.13 0.23 0.08	5.1 9.1 6.9 6.1 2.5	10.7 3.3 8.3 16.0 10.1	1,30 0,77 0,73 2,39 1,40	792 860 557 1370 650	0.50 6.47 0.95 0.36 1.01	0.08 0.04 0.03 0.02 0.22	0,07 <0.05 0.10 0,08 0,09
53452 53453 53454 53455 53456		1360 191.0 108.5 27.5 109.5	4,00 4,34 7,13 1,87 3,71	7.23 23.6 12.10 3.56 10.80	0.12 0.79 0.18 <0.05 0.13	0.18 0.37 0.56 0.23 0.29	0.02 0.01 0.02 0.01 0.01	0.021 0.048 0.052 0.013 0.018	0.08 0.02 0.11 0.15 1.13	9.1 7.6 5.7 7.4 8.9	15.5 13.5 14.1 2.5 16.3	1,47 0.69 2.72 0.18 1.81	1080 605 1060 414 950	0,08 0.48 0.77 0.25 0.09	0.05 0.04 0.04 0.06 0.07	<0.05 <0.05 <0.05 <0.05 <0.05
153457 153458 153459 153460 153461		29.6 137.5 144.5 63.9 54.8	3.58 3.22 5.41 4.80 5.23	10.45 0.45 11.65 5.66 6.17	0.12 <0.05 0.18 0.11 0.11	0.13 0.02 0.25 0.47 0.49	0.02 1,26 0.01 0.11 0.11	0.008 <0.005 0.031 0.017 0.017	0.92 0.13 0.52 0.13 0.15	1.7 0.5 13.0 1.4 1.4	11.5 0.3 14.6 10.5 10.8	1.38 0.02 2.44 1.53 1.53	719 48 1270 522 486	0.27 1.73 0.76 0.93 0.93	0.44 0.01 0.04 0.18 0.21	<0.05 <0.05 <0.05 0.07 0.07
153462 153463 153464		93.3 29,9 189,0	4.85 6.15 5.13	5.88 6,61 11,10	0.11 0,16 0,20	0.43 0,40 0,32	0.31 0,11 0,85	0.019 0,009 0,035	0.13 0,07 0,05	1.4 2.4 9.5	8.8 7,8 29,8	1.45 1,00 1,66	442 415 1300	0.33 11,45 2,79	0.14 0,09 0,04	0.05 0,15 0,05

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendlx Pages Finalized Date: 4-OCT-2021 Account: GOLARO

(ALS	,								(CERTIFI	CATE O	F ANAL	YSIS	VA2122	23601	
Sample Description	Method Analyte Units LOD	ME-MS41 Ni ppm 0,2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0,2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0,001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0,2	ME-MS41 Sn ppm 0,2	ME-MS41 Sr ppm 0,2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0,01	ME-MS41 Th ppm 0,2	ME-MS41 Ti % 0,005
153401 153402 153403 153404 153451		11.8 12.3 3.0 38.6 35.9	1840 1130 1610 1270 1070	1.8 7.9 1.0 3.4 2.3	6.2 6.9 2.9 11,8 1.6	<0.001 0.001 <0.001 <0.001 <0.001	<0.01 0.35 0.01 0.01 2.09	<0.05 0.24 0.11 1,27 <0.05	6.8 9.4 3.9 24.4 6.3	<0.2 <0.2 <0.2 0.3 0.3	0.5 <0.2 0.4 0.5 0.2	46.8 104.5 146.5 135.5 149.0	<0.01 <0.01 <0.01 <0.01 <0.01	0,01 0.14 <0.01 0,02 0,01	1.2 1.7 1.0 0.6 0.3	0.162 <0.005 0.162 0,109 0,161
53452 53453 53454 53455 53456		3.1 10.9 16.4 2.1 6.6	1970 1420 1890 500 1660	1,2 3,4 3,4 1,7 1,7	2.9 1.1 3.4 7.0 54.5	<0.001 0.001 <0.001 <0.001 <0.001	0,01 1,76 0,59 0,01 0,01	0.13 0.36 0.22 0.06 0.13	5,2 9.8 17.1 2.7 5.5	0.5 5.2 1.1 <0.2 <0.2	0,3 1.0 0.5 0.2 0.4	95.6 77.9 96.6 19.7 125.0	<0.01 <0.01 <0.01 <0.01 <0.01	0,05 0.02 0.22 0.02 0.02	1,4 1,2 0.8 1.0 1.3	0,081 0,211 0,236 0,012 0,141
153457 153458 153459 153460 153461		9.9 7.1 7.7 16.6 15.6	1160 130 1780 1170 1190	6.6 7.5 1.0 3.7 4.4	33.0 1,5 22,8 3.6 4.6	<0.001 <0,001 0,002 0.001 0.002	0.32 1,01 0,32 3.11 3.14	0.39 0.82 0.10 0.24 0.22	5.4 1,2 8.8 10.4 11.6	<0.2 <0.2 0.5 0.2 0.4	0.2 <0.2 0.4 0.2 0.3	141.0 22.6 65.4 79.3 83.2	<0.01 <0.01 <0.01 <0.01 <0.01	0.04 0,02 0,05 0.02 0.01	0.3 0,2 2,3 0.2 0.2	0.209 <0,005 0,182 0.241 0.247
153462 153463 153464		11.7 24,4 5,7	1100 900 1850	3.9 9.7 4.0	3.4 1,2 1,6	<0.001 0,006 0,001	2.19 4,14 0,38	0.29 0,33 0,48	11.7 7,3 10,8	<0.2 3,7 0,5	0.2 0,3 0,4	71.4 55.4 158.5	<0.01 <0,01 <0,01	0.01 0,29 0,05	0.2 0,4 1,2	0.229 0,268 0,178

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendlx Pages Finalized Date: 4-OCT-2021 Account: GOLARO

	,								OFSTIE: 6	¥TE 05 ::	LALVOIC	1/40:000	CO1
									CERTIFIC	ATE OF A	NALYSIS	VA21223	601
	Method	ME-MS41											
	Analyte	Τl	U	V	W	Υ	Zn	Zr					
Sample Description	Units	ppm											
ample Description	LOD	0,02	0.05	1	0.05	0.05	2	0.5					
153401		<0.02	0.67	219	< 0.05	9.61	68	9.5					
153402		0.05	0.55	50	0.06	8.24	65	7.4					
153403		0.03	0.49	83	0.07	7.51	54	9.4					
153404		0,06	0,18	162	<0.05	14,25	59	4,8					
153451		0.02	0.20	110	0.08	6,71	59	9.7					
153452		<0,02	0.53	125	0.05	14,30	71	4,6					
153453		0.02	0.57	153	0.39	11.25	62	18.4					
153454		0.04	0.45	264	0.15	11.75	111	18.2					
153455		0.04	0.38	44	< 0.05	4.19	28	9.6					
153456		0.09	0.36	144	<0.05	10.65	95	7.6					
153457		0.49	0.16	153	0.23	5.73	149	3.6					
153458		0.06	0.07	16	< 0.05	0,67	2	0.9					
153459		0,15	0.92	180	0.19	12,70	144	7,1					
153460		0.03	0.19	133	0.12	6.14	40	9.8					
153461		0.04	0.21	141	0.12	6.24	41	10.5					
153462		0.02	0.20	145	0.10	5.59	42	10.9					
153463		0,05	0,30	142	0,35	5,07	52	11,6					
153464		0,06	0,57	172	0.09	13,40	81	13,5					
		I											

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 4-OCT-2021 Account: GOLARO

CERTIFICATE	OF	ΔΝΔΙ ΥΚΙΚ	VA21223601
CENTIFICATE	. OF	MINALISIS	VMZ 1 Z Z 3 0 0 1

		CERTIFICATE COMMENTS										
Applies to Method:	Gold determinations by this met ME–MS41		LYTICAL COMMENTS e to the small sample weight used (0.5g).									
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. CRU-21 CRU-31 CRU-QC LOG-22											
7,42,100 00 11001000	ME-MS41 WEI-21	PUL-31	PUL-QC	SPL-21								

APPENDIX C2

COPPERVIEW NORTH

ASSAY CERTIFICATES – SOIL SAMPLES

NOTE: These results are in the public domain.

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 1 Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

CERTIFICATE VA21223604

Project: Deadman Lake Project

This report is for 207 samples of Soil submitted to our lab in Vancouver, BC, Canada on 24-AUG-2021.

The following have access to data associated with this certificate:

ROBERT WEICKER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login – Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
AuME-TL43	25g Trace Au + Multi Element PKG	

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

ALS Canada Ltd,
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

										CEKIIII	C/ \ I = O	/ (14/ (V/\Z Z 2		
Sample Description	Method	WEI-21	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0,001	0.01	0.01	0.1	10	10	0.05	0,01	0.01	0,01	0.02	0,1	1	0,05
3201		0.42	0,002	0.07	1.79	2.3	<10	110	0.42	0.09	0,22	0.05	9.32	6.2	20	0.81
3202		0.38	0.002	0.04	1.44	1.8	<10	90	0.31	0.07	0,25	0.04	10.25	6.5	22	0.80
3203		0.32	0.003	0.02	1.61	1.8	<10	100	0.35	0.08	0,22	0.04	9.34	5.3	19	0.73
3204		0.34	0,001	0.04	1.26	0.5	<10	90	0.24	0.07	0,22	0.01	6.35	2.7	13	0.64
3205		0.32	0,002	0.19	2.06	1.8	<10	120	0.48	0.09	0,28	0.04	13.30	8.8	27	1.08
3206		0,34	0,003	0,07	1,73	1.4	<10	110	0,31	0,08	0,24	0,06	7.52	6,6	22	0,88
3207		0.38	0.001	0.05	1,81	1.6	<10	110	0.43	0.08	0,21	0.05	9.29	6,8	21	0.92
3208		0.36	0.002	0.09	1,45	1.7	<10	100	0.44	0.10	0,24	0.08	7.67	9,8	18	1.31
3209		0.26	0.001	0.12	2,22	2.0	<10	120	0.44	0.08	0,23	0.09	11.40	9,8	23	3.21
3210		0.30	0.002	0.07	1,64	1.7	<10	100	0.36	0.08	0,25	0.07	11.30	8,2	21	1.18
3211		0.34	0.001	0.16	2.26	1.9	<10	160	0.48	0.08	0.29	0.07	13.35	9.8	25	1.31
3212		0.30	<0.001	0.21	2,28	1.8	<10	150	0.46	0.08	0,22	0.07	12.75	10.3	39	1,21
3213		0.36	0.001	0.10	1,88	2.2	<10	100	0.43	0.08	0,23	0.04	8.80	9.8	49	1,01
3214		0.26	0.001	0.12	1,90	1.8	<10	90	0.32	0.08	0.21	0.04	8.16	9.0	32	1.03
3215		0.30	0.003	0.11	1,86	1.8	<10	80	0.40	0.10	0.24	0.04	9.15	8.0	28	0.90
3216		0.30	0.001	0.08	2.02	1.8	<10	110	0.42	0.10	0.23	0.04	8.97	7.1	23	0.97
3217		0,24	0,002	0.08	2.12	1.0	<10	220	0.35	0.10	0,61	0.10	18.65	6.6	22	0.60
3218		0,26	0,001	0.08	1.93	1.8	<10	210	0.33	0.10	0,46	0.06	14.80	7.0	22	0.86
3219		0,24	0,002	0.15	1.96	1.7	<10	280	0.47	0.11	1,00	0.10	14.65	5.9	25	0.73
3220		0.24	0.007	0.22	2.25	2.1	<10	200	0.60	0.12	0.71	0.09	14.80	6.7	24	0.86
3221 3222 3223 3224 3225		0.28 0.40 0.32 0.28 0.28	0.001 0.002 0.005 0.003 0.002	0.10 0.06 0.13 0.17 0.06	1.67 1.12 1.45 1.37 1.54	1.3 0.8 1.0 1.1	<10 <10 <10 <10 <10	140 80 90 100 120	0.39 0.13 0.28 0.22 0.29	0.09 0.07 0.07 0.07 0.07	0.56 0.29 0.33 0.37 0.43	0.05 0.04 0.05 0.05 0.06	10.80 5.03 6.98 9.85 10.45	6.5 4.8 6.6 6.4 7.9	22 16 18 17 17	0,81 0.63 0.94 1,36 1,48
3226		0,24	0,003	0,06	1,54	1.0	<10	120	0.34	0,07	0,34	0,05	10.80	6.8	17	1,41
3227		0.32	0.003	0.05	1,71	1.7	<10	110	0.42	0.07	0,41	0.05	10.45	9.1	22	3,11
3228		0.28	0.002	0.12	1,61	1.3	<10	130	0.37	0.08	0,69	0.07	14.40	7.0	17	8,00
3229		0.34	0.003	0.08	1,39	3.1	<10	120	0.25	0.08	0,32	0.05	7.60	6.9	17	9,06
3230		0,36	0,001	0,11	2,19	2.5	<10	120	0.44	0,10	0,26	0,04	10.35	9.5	22	6,17
3231 3232 3233 3234 3235		0,38 0,38 0,30 0,30 0,28	0,003 0,001 0,003 0,001 0,001	0,08 0,15 0,10 0,18 0,12	2.11 2.00 1.89 1.98 1.74	3.1 1.9 1.6 1.9	<10 <10 <10 <10 <10	150 320 230 190 180	0,40 0,39 0,24 0,36 0,42	0,09 0,09 0,08 0,09 0,07	0,32 0,58 0,59 0,60 0,51	0,07 0,07 0,08 0,09 0,07	12.80 14.90 10.70 14.20 11.80	8.4 6.7 6.8 7.3 5.9	27 25 26 27 21	1,71 0,69 0,67 0,63 0,62
3236		0.30	0.001	0.13	1.65	1.6	<10	160	0.38	0.08	0.56	0.09	13.75	6.6	27	0.53
3237		0.42	0,007	0,03	1,22	3.3	<10	140	0.33	0,07	0,63	0,06	14,05	10.3	37	0,85
3238		0.28	0.003	0,20	1,82	2.7	<10	210	0.43	0,09	0,79	0,15	15,20	5.8	33	0.52
3239		0.30	0.003	0,09	1,49	1.9	<10	170	0.35	0.08	0.38	0,06	9,41	4.4	19	0,64
3240		0.44	0.001	0.08	2.20	1.4	<10	290	0.37	0.09	0.45	0.05	9,63	4.5	20	0.68

ALS Canada Ltd,
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - C Total # Pages: 7 (A - D) Plus Appendlx Pages Finalized Date: 5-NOV-2021 Account: GOLARO

									<u>`</u>	PEKIIII	CATEO		1 313	VAZIZZ	- 3004	
Sample Description	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0,2	10	0,2	0,1	0,001	0.01	0,05	0,1	0,2	0,2	0,2	0.01	0.01	0,2	0,005
3201		12.3	1230	3.8	4,5	<0.001	<0.01	0.13	3.1	0.2	0.4	15.8	<0.01	0,05	0,9	0.066
3202		12.4	920	3.2	5.1	<0.001	0.01	0.16	3.2	0.2	0.3	16.9	<0.01	0,04	0.9	0.068
3203 3204		11.2 8,6	950 260	4.1 3.9	4.4 3.1	<0.001 <0,001	0.01 0,01	0.11 0,05	2.5 2.3	<0.2 <0.2	0.4 0,3	15.3 16.5	<0.01 <0.01	0.02 0.02	0.8	0.067 0,061
3205		18.6	900	3,5	6.4	<0.001	<0.01	0.12	4.9	0.3	0.4	22,1	<0.01	0.02	1,1	0.067
3206		15.4	1490	3,6	5,2	<0,001	<0.01	0,11	3.0	<0,2	0.3	18,6	<0.01	0,03	0,9	0,068
3207		15.3	960	3.8	5,4	<0.001	<0.01	0.10	2.8	0.2	0.4	16.6	<0.01	0.02	0.9	0.072
3208		10.7	600	5.5	6,4	<0.001	0.01	0.14	4.0	0.2	0.3	18.4	<0.01	0.04	0.7	0.049
3209 3210		16.4 15.8	870 1130	4.3 4.4	10.3 5.9	<0.001 <0.001	<0.01 0.01	0.15 0.12	3.7 3.1	0.2 0.2	0.4 0.4	18.1 19.6	<0.01 <0.01	0.03	1.1 0.8	0.079 0.071
3211		19.5	1170	4.1	7.2	<0.001	<0.01	0.12	5.0	<0.2	0.4	22.8	<0.01	0.03	1.0	0.081
3212		37,5	1080	4.0	6.4	<0,001	<0.01	0,09	3,6	0.2	0.4	18.4	<0.01	0.03	1,0	0,081
3213		47,5	1020	3.9	5.2	<0,001	<0.01	0,09	2,9	<0.2	0.4	17.2	<0.01	0.02	0.7	0,080
3214		29.7	1190	3.6	5.3	<0.001	0.01	0.11	3.1	0.3	0.4	17.8	<0.01	0.02	0.9	0.074
3215 3216		21.0 17.9	1190 1250	4.1	5.7 5.5	<0.001	<0.01	0.12	3.0	0.3 <0.2	0.4	17.7 17.2	<0.01	0.04	0.9	0.084
3217		14.6	170	4.4	5,8	<0,001	<0.01	0,11	3,8	0.4	0,5	28,1	<0.01	0,02	0,8	0,078
3218		19.5	380	4.0	4,8	<0,001	<0.01	0,13	4,0	<0.2	0,4	23,7	<0.01	0,02	0,9	0,072
3219		18.7	480	3.8	6,5	<0,001	0.01	0,14	3,6	0.6	0,4	39,0	<0.01	0,06	0,5	0,065
3220 3221 3222		15.8 11.9 8.3	270 250	3.4 3.3	9.0 5.3	<0.001 <0.001 <0.001	<0.01 0.01 0.01	0.13 0.13 0.11	6.8 4.4 2.2	0.6 0.3 <0.2	0.5 0.4 0.3	38.7 28.2 19.7	<0.01 <0.01 <0.01	0.05 0.02 0.02	0.8 0.5	0.073 0.076 0.072
3223		10.6	370	3.2	6.8	<0.001	0.01	0.10	2.8	0.3	0.3	22.8	<0.01	0.02	0.4	0.067
3224		11,0	250	3.2	9.2	<0,001	0.01	0,12	3,2	0,3	0.3	24.6	<0.01	0.02	0.6	0.074
3225		11.0	320	3.5	13.1	<0,001	0.01	0,11	3,6	0,3	0.3	27.3	<0.01	0.02	0.5	0.073
3226		10,8	350	3,9	9,9	<0,001	0,01	0,11	2.9	0,2	0.3	23.8	<0.01	0.02	0.4	0,067
3227		13.8	500	3.3	15.4	<0.001	0.01	0.14	4.4	0.2	0.3	25.5	<0.01	0.03	0.7	0.078
3228		10.0	320	3.9	8.7	<0.001	0.02	0.12	4.4	0.3	0.3	31.3	<0.01	0.02	0.5	0.069
3226 3229 3230		10.9 16.7	370 1150	3.5 4.2	6.8 8.5	<0.001 <0.001 <0,001	0.01 0.01	0.11 0,13	2.9 3.8	0.3 0.2	0.3 0.4	22.5 21.7	<0.01 <0.01	0.02 0.03	0.4 0.9	0.079 0.078
3231		18,3	1150	5,0	7,1	<0,001	0,01	0,15	3,8	0,3	0,5	20,0	<0.01	0,04	1.0	0,072
3232		18,4	210	4,7	5,0	<0,001	<0,01	0,13	4,3	0,3	0,4	26,6	<0.01	0,02	0.9	0,073
3233		17,9	320	4,5	5,6	<0,001	0,01	0,11	4,4	0,3	0,4	28,1	<0.01	0,01	0.7	0,074
3234		18.8	300	4.8	4.4	<0.001	0.01	0.13	4.0	0.5	0.4	30.3	<0.01	0.04	0.8	0.088
3235		15.8	280	4.7	3.9	<0.001	0.01	0.12	3.3	0.3	0.4	25.4	<0.01	0.03	0.7	0.067
3236 3237 3238		16.7 19.3 21.3 11.9	310 980 510 470	3.9 2.9 4.1 4.0	4.4 4.6 4.6 3.3	<0.001 <0,001 0,001 <0,001	0.01 <0.01 0.02 0.01	0.14 0,24 0,17 0,11	3.6 5.9 4.0 2.3	0.3 0.3 0.5 0.2	0.3 0,2 0.3 0.3	24.4 30,3 31,8 18,6	<0.01 <0.01 <0.01 <0.01	0.02 0.03 0.03 0.02	0.6 1,1 0.6 0.7	0.065 0,069 0.055 0.057
3239 3240		14.9	190	4.9	4.3	0.001	<0.01	0.12	3.1	0.2	0.5	23.5	<0.01	0.02	1.1	0.085

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 2 - D Total # Pages: 7 (A - D) Plus Appendlx Pages Finalized Date: 5-NOV-2021 Account: GOLARO

									CERTIFICATE OF AUACETORS - WILLIEUSOOT
	Method			AuME-TL43			AuME-TL43		
	Analyte	TI	U	V	W	Y	Zn	Zr	
Sample Description	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOD	0,02	0.05	1	0.05	0.05	2	0.5	
3201		0.04	0.30	59	0.07	3.35	25	5.3	
3202		0.03	0.28	65	0.07	3.30	26	4.4	
3203		0.03	0.26	54	0.07	2.68	21	5.4	
3204		0,02	0,23	24	<0.05	3.09	13	2,6	
3205		0,06	0,35	66	<0.05	7.13	36	4.1	
3206		0,04	0,22	53	<0,05	2,42	34	4,9	
3207		0.04	0.27	51	0.05	2.47	35	6.5	
3208		0.14	0.23	81	< 0.05	2.23	53	1.4	
3209		0.08	0.31	69	< 0.05	2.52	57	5.6	
3210		0.14	0.26	56	< 0.05	2.73	46	3.4	
3211		0.09	0.31	69	< 0.05	5.01	52	5.0	
3212		0,06	0,32	54	<0.05	3,32	51	4,9	
3213		0.05	0.24	53	<0.05	2,41	37	2,6	
3214		0.04	0.24	55	< 0.05	2.48	35	6.1	
3215		0.05	0.30	59	0.06	2.59	33	6.8	
3216		0.04	0.29	56	0.05	3.23	32	5.0	
3217		0,05	0.36	47	<0.05	3,36	28	4,0	
3218		0,05	0.43	52	0.06	8,61	29	4,5	
3219		0.05	0.89	49	0.06	8.52	25	3.6	
3220		0.06	0.89	67	<0.05	13.65	24	4.3	
3221		0.07	0.44	58	< 0.05	6.91	27	2.8	
3222		0.04	0.20	50	< 0.05	2.60	24	1.3	
3223		0.05	0.24	52	< 0.05	3.82	28	8.0	
3224		0,07	0,37	51	<0.05	6.43	33	1,3	
3225		0.09	0.30	57	<0.05	7,27	39	1,1	
3226		0.09	0,25	50	<0.05	5,67	34	0,9	
3227		0.15	0.30	70	< 0.05	5.21	40	1.5	
3228		0.28	0.77	52	<0.05	12.25	28	1.8	
3229		1.02	0.26	58	<0.05	3.54	37	0.9	
3230		0,32	0,28	63	<0,05	3,89	47	2,9	
3231		0.04	0,39	62	<0,05	4.16	42	4,5	
3232		0.05	0,86	53	<0.05	6,54	26	4,9	
3233		0.04	0.52	55	<0.05	5.33	32	4.4	
3234		0.04	0.50	52	< 0.05	5.11	31	5.2	
3235		0.03	0.39	47	<0.05	4.99	27	3.9	
3236		0.04	0.47	56	<0.05	7.30	28	2.0	
3237		0,04	0.43	86	0,07	8,06	32	2,8	
3238		0.04	0.67	58	0,05	12,00	28	4,5	
3239		0.12	0.37	45	<0.05	3.90	19	3.7	
3240		0.04	0.56	47	< 0.05	3.91	22	6.2	

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 3 - A
Total # Pages: 7 (A - D)
Plus Appendix Pages
Finalized Date: 5-NOV-2021
Account: GOLARO

()									(CERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0,02	AuME-TL43 Au ppm 0,001	AuME-TL43 Ag ppm 0,01	AuME-TL43 Al % 0,01	AuME-TL43 As ppm 0,1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0,05	AuME-TL43 Bi ppm 0,01	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0,01	AuME-TL43 Ce ppm 0,02	AuME-TL43 Co ppm 0,1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0,05
3241		0.34	0.002	0.09	1,69	1.1	<10	160	0.36	0.08	0.47	0.06	10,30	4.9	20	0,54
3242		0.52	0.004	0.03	1.04	2.5	<10	90	0.26	0.05	0.48	0.05	12.50	7.4	36	0.62
3243		0.30	0.002	0.08	1.19	1.2	<10	130	0.24	0.06	0.63	0.09	7.54	4.7	21	0.48
3244		0,40	0,001	0,18	1,89	2,6	<10	110	0,42	0,10	0,25	0,07	12,45	8,5	26	1,04
3245		0.30	0,001	0.11	1,37	1,6	<10	110	0,28	0,07	0,25	0,04	6,06	5,3	20	0,62
3246		0,32	0,003	0.14	1,88	1,5	<10	270	0,52	0,09	0,68	0,13	18,10	5.8	21	0.44
3247		0.34	0.016	0.15	1.40	1.3	<10	170	0.24	0.07	0.25	0.29	7.13	6.7	21	0.75
3248		0.32	0.001	0.07	1.24	1.6	<10	90	0.22	0.07	0.16	0.04	4.11	5.3	17	0.86
3249		0.36	0.003	0.10	1.18	1.8	<10	120	0.23	0.06	0.28	0.06	5.91	6.4	26	0.68
3250		0.26	0.002	0.09	1.44	1.5	<10	220	0.24	0.07	0.33	0.09	11.40	5.2	19	0.70
3251		0.40	0.002	0.08	1.59	1.6	<10	280	0.33	0.07	0.64	0.10	12.50	4.1	16	0.75
3252		0,36	0.003	0,22	1,87	2,2	<10	110	0,39	0,10	0.26	0,10	10,20	8,6	26	0.92
3253		0.38	<0.001	0.23	1,79	2,2	<10	120	0.37	0.10	0,22	0.06	9.81	7.3	23	1,20
3254		0.40	0.002	0.29	1.96	2.4	<10	100	0.38	0.12	0.23	0.09	10.55	9.2	23	1.14
3255		0.36	0.004	0.21	1.86	1.7	<10	130	0.36	0.13	0.43	0.05	14.60	7.3	25	0.81
3256		0.28	< 0.001	0.25	1.67	2.1	<10	90	0.35	0.12	0.34	0.07	9.20	7.0	21	0.89
3257		0,30	0,001	0,23	1,78	1,9	<10	130	0,31	0,13	0,34	0,08	10.10	8,9	21	0.78
3258		0,32	0,002	0,32	1,81	1,3	<10	180	0.43	0,11	1,15	0,23	15,60	5,4	14	0.98
3259		0,24	0,002	0,41	1,72	1,4	<10	170	0.58	0,11	1,32	0,26	22,7	6.1	13	0.78
3260		0.30	0.003	0.12	1.94	1.9	<10	210	0.41	0.09	0.82	0.12	13.95	6.2	24	0.55
3261		0.38	0,002	0.09	1.62	2,1	<10	90	0.34	0.08	0,22	0,05	9.64	5.8	22	0,81
3262		0.34	0.002	0.03	1.18	1.7	<10	80	0.24	0.06	0.22	0.03	6.02	4.9	19	0.61
3263		0.32	0.001	0.06	1.41	1.8	<10	170	0.20	0.12	0.29	0.04	8.36	5.0	19	0.42
3264		0,30	0.003	0,13	1,49	2,7	<10	130	0.31	0.13	0,23	0.07	9.80	8,3	23	0.77
3265		0.28	0.012	0.11	1,34	2,2	<10	190	0,28	0,23	0.50	0.16	10.65	8.5	23	0.76
3266		0,28	0,009	0,11	1,46	3,0	<10	170	0,23	0,17	0,42	0,10	9,06	7,1	18	0.78
3267		0.26	0.016	0.12	1.52	4.7	<10	170	0.27	0.19	0.31	0.09	10.30	9.1	21	0.64
3268		0.24	0.006	0.12	1.40	3.8	<10	210	0.24	0.15	0.44	0.15	9.45	6.8	18	0.66
3269		0.26	0.007	0.10	1.54	2.7	<10	150	0.31	0.10	0.32	0.09	11.35	7.6	25	0.82
3270		0,22	0,018	0,34	1,98	3,0	<10	160	0,41	0,13	0,30	0,08	14.20	7.8	23	1.07
3271		0,34	0.002	0.08	1,81	2,2	<10	100	0,31	0.10	0,33	0.05	7,87	8.8	21	5,71
3272		0,32	0,004	0,13	1.88	3,2	<10	160	0.43	0,09	0,22	0,07	11,25	8.5	28	1.24
3273		0,30	0,002	0.14	1,52	2,5	<10	120	0,40	0,08	0.26	0,11	8.46	8.0	24	1.21
3274		0.26	0.003	0.17	1.77	3.1	<10	100	0.38	0.08	0.20	0.12	10.60	7.3	26	1.29
3275		0.28	0.002	0.09	1.81	3.1	<10	80	0.36	0.09	0.20	0.11	8.83	6.5	23	1.11
3276		0.28	0.003	0.09	1.81	1.9	<10	70	0.32	0.11	0.18	0.05	7.85	8.2	19	0.96
3277		0,24	0.001	0,23	2.14	2,1	<10	100	0,41	0.13	0.17	0.04	8.74	7,6	21	0,92
3278		0,30	0,001	0,11	1.86	1.4	<10	60	0,33	0,15	0,17	0,04	6.95	6.5	20	0,94
3279		0.28	0,002	0,17	1,63	1.8	<10	80	0,31	0,11	0,19	0,04	8,83	7,6	19	0.91
3280		0.30	0.003	0.10	1.22	1.5	<10	120	0.21	0.09	0.38	0.07	7.17	5.2	20	0.84
3200		1 0.00	0.000	0.10			~ 10	120	O.E.	0.00	0.00	0.07		0.2		0.0

^{*****} See Appendix Page for comments regarding this certificate *****

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 3 - B
Total # Pages: 7 (A - D)
Plus Appendlx Pages
Finalized Date: 5-NOV-2021
Account: GOLARO

VA21223604

Project: Deadman Lake Project

CERTIFICATE OF ANALYSIS

	Method	AuME-TL43														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Мо	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Sample Description	LOD	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01	0,05
3241		23.2	1,88	5,19	<0.05	80.0	0.02	0,015	0,04	5,1	8.8	0.28	210	0,24	0.04	0,63
3242		29.7	2.77	3.63	0.06	0.04	0.01	0.013	0.04	4.1	5.3	0.46	222	0.30	0.02	0.19
3243		20.9	1.71	3.98	< 0.05	0.07	0.03	0.012	0.04	3.6	6.2	0.29	191	0.23	0.03	0.64
3244		28,9	2.18	6.30	0,05	0,11	0.03	0,018	0,07	4,6	10,1	0,39	272	0.46	0,02	0,63
3245		18.7	1,79	4.40	<0.05	0.04	0.02	0.014	0.05	2.1	9.6	0.27	137	0.35	0.02	0,55
3246		60,3	1,95	5,07	0,07	0,12	0,03	0,019	0,04	13,4	17,1	0.31	759	0,25	0,03	0,60
3247		19.1	1.98	4.59	< 0.05	0.04	0.02	0.013	0.06	2.5	6.1	0.29	655	0.49	0.02	0.37
3248		10.4	1.72	4.67	< 0.05	0.04	0.01	0.014	0.04	1.6	6.2	0.23	271	0.32	0.02	0.42
3249		18.3	2.22	4.22	< 0.05	0.02	0.01	0.012	0.05	2.3	6.8	0.34	237	0.35	0.02	0.37
3250		23.2	1.84	4.33	<0.05	0.07	0.03	0.015	0.03	3.7	10.1	0.26	124	0.30	0.03	0.57
3251		30.2	1.55	4.12	< 0.05	0.05	0.03	0.014	0.04	5.5	17.1	0.26	113	0.21	0.04	0.57
3252		27,4	2,15	5,67	<0.05	0,10	0.02	0.017	0.06	3.7	9,2	0.44	406	0.45	0.02	0,66
3253		24,7	2,07	5.71	<0.05	80.0	0.03	0.017	0.05	3.6	8.4	0.33	315	0.50	0.02	0,64
3254		43.0	2.62	6.17	< 0.05	0.10	0.03	0.017	0.06	4.0	8.8	0.46	351	0.56	0.02	0.56
3255		47.3	2.18	5.83	0.06	0.07	0.02	0.020	0.06	8.1	10.6	0.44	269	0.45	0.03	0.52
3256		20.3	2.02	5.87	< 0.05	0.08	0.05	0.016	0.06	3.7	8.9	0.37	174	0.55	0.03	0.97
3257		40,2	2,40	6,30	<0.05	0,08	0,03	0,014	0,07	4.0	10,2	0,54	187	0,41	0,03	0,68
3258		112.0	1,67	4,52	0.05	0.08	0.05	0.017	0.08	8,8	15,9	0.30	270	0.32	0.04	0,83
3259		140.5	1,65	4,25	0.07	0.10	80.0	0,018	80.0	12.3	15.1	0.32	497	0.35	0.04	0.70
3260		30.4	2.24	5.42	0.05	0.16	0.03	0.018	0.05	4.1	10.8	0.34	216	0.30	0.04	0.98
3261		23.5	2.14	5.01	< 0.05	0.11	0.02	0.017	0.03	3.5	6.3	0.26	169	0.40	0.03	0.54
3262		14.6	1.93	4.12	< 0.05	0.09	0.02	0.010	0.03	2.3	4.7	0.21	135	0.26	0.03	0.42
3263		19.2	1.92	4.34	< 0.05	0.07	0.02	0.014	0.04	2.6	6.8	0.26	115	0.30	0.03	0.57
3264		34,5	2,32	4,86	<0.05	0,07	0.02	0,016	0,06	3,1	7,3	0.37	555	0.48	0,03	0,44
3265		40,2	2,51	4,38	0.05	0.04	0.03	0,018	0.13	3.7	7.2	0,43	835	0,51	0.03	0,41
3266		27.3	2,15	4.89	<0.05	0.04	0.03	0,017	0.10	2,5	7.3	0.36	789	0.48	0.03	0.52
3267		45.8	2.62	4.91	0.05	0.03	0.02	0.019	0.08	3.3	7.6	0.42	693	0.60	0.03	0.41
3268		31.8	2.11	4.58	< 0.05	0.05	0.03	0.019	0.11	2.8	6.7	0.31	859	0.57	0.03	0.56
3269		36.8	2.24	4.73	<0.05	0.03	0.02	0.015	0.07	3.6	8.0	0.35	502	0.47	0.03	0.48
3270		32,9	2,29	5,84	<0.05	0,06	0,05	0,021	0,04	5,1	8,3	0,32	750	0,70	0,03	0,69
3271		39,5	2,51	5,81	<0.05	0,02	0,03	0,020	0,05	4,0	10,8	0,48	336	0,38	0,03	0,45
3272		25,9	2,15	6.49	<0.05	0.10	0.02	0,020	0.03	3,5	9,4	0.35	707	0.49	0,02	0,64
3273		21.1	1,95	5.35	<0.05	0.08	0.02	0.013	0.05	3.3	8.4	0.32	368	0.48	0.02	0.70
3274		27.0	1.92	6.12	< 0.05	0.14	0.02	0.017	0.04	4.0	10.1	0.29	295	0.40	0.02	0.72
3275		23.1	1.81	6.03	<0.05	0.17	0.02	0.017	0.03	3.3	8.3	0.27	372	0.61	0.02	0.83
3276		21.4	1.96	6.50	< 0.05	0.15	0.02	0.015	0.04	3.5	11.0	0.38	259	0.54	0.02	0.77
3277		29,1	1,89	7.89	<0.05	0,08	0,02	0,015	0,05	3,8	11,8	0,38	120	0.35	0,02	0,87
3278		19,8	1,64	6.99	<0.05	0,11	0.03	0.017	0.04	3,3	11,6	0,35	113	0.41	0.02	0,93
3279		18.2	1,85	6.24	<0.05	0.07	0.03	0.017	0.04	3.7	9.6	0.33	363	0.52	0.02	0.76
3280		15.2	1.56	4.52	<0.05	0.04	0.03	0.013	0.04	2.6	7.4	0.25	264	0.33	0.02	0.63

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 3 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(ALS)									(CERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
Sample Description	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0,2	10	0,2	0.1	0,001	0.01	0,05	0.1	0,2	0,2	0,2	0,01	0,01	0,2	0,005
3241		11.1	180	4.6	4.1	<0.001	0.01	0.14	2,9	<0,2	0.4	22.0	<0.01	0,01	0.7	0.073
3242		13.6	580	2.4	5.3	<0.001	<0.01	0.21	3.8	0.2	0.2	22.9	<0.01	0.03	0.9	0.074
3243		11.8	320	4.0	3.1	<0.001	0.03	0.14	2.1	0.3	0.3	26.1	<0.01	0.02	0.5	0.056
3244		15.9	1110	3.9	7,3	<0.001	<0.01	0.15	3,2	<0,2	0.4	19.5	<0.01	0,03	1.3	0,076
3245		10.4	360	3.3	4.6	<0.001	0.02	0,10	2.1	0.2	0.3	15.9	<0.01	0,02	0,3	0,043
3246		11.8	200	4.6	3.1	<0.001	<0.01	0,12	4.1	0.3	0.4	36.1	<0.01	0,02	0,8	0,049
3247		10.9	1110	3.7	7.1	<0.001	<0.01	0,11	2.6	<0.2	0.3	18.3	<0.01	0,02	0.5	0.043
3248 3249 3250 3251		8.9 12.5 10.2	930 860 730 390	3.8 3.4 4.3	5.0 5.2 3.5	<0.001 <0.001 <0.001 0.001	0.02 0.02 0.01	0.09 0.13 0.10	1.7 2.5 2.6	<0.2 <0.2 0.2 0.6	0.3 0.3 0.3	12.3 18.2 24.7	<0.01 <0.01 <0.01	0.02 0.03 0.03	0.4 0.4 0.6	0.048 0.051 0.040 0.048
3252		15,2	1270	3,6	6,8	0,001	0.01	0,15	2,6	0.2	0.4	18.8	<0.01	0,03	1,1	0,075
3253		14,0	1130	4,5	6,2	<0,001	<0.01	0,15	2,3	<0.2	0.4	15.4	<0.01	0,02	0,9	0,057
3254		12.7	1090	4,6	8.1	<0.001	<0.01	0.17	2,9	<0.2	0.4	15.0	<0.01	0.04	1.0	0.070
3255		15.1	200	5.0	9.3	0.001	<0.01	0.14	3.8	0.3	0.4	28.4	<0.01	0.03	1.2	0.088
3256		13.1	920	5.9	6.0	<0.001	0.01	0.16	2.3	0.3	0.4	21.6	<0.01	0.02	0.9	0.076
3257		12,3	430	4.3	6,3	<0,001	<0,01	0,15	3.0	0,2	0.4	22.3	<0.01	0,04	1,0	0,081
3258		11,1	560	4.3	9,4	<0,001	0.04	0,12	1.7	1,3	0.5	38.9	<0.01	0.05	0.3	0,048
3259		10,6	620	4.0	6,3	0,001	0.04	0,13	1.9	1,4	0.4	41.6	<0.01	0.11	0.2	0.043
3260		14,4	330	4.8	4,2	<0.001	0.02	0,16	3.6	0,4	0.4	34.0	<0.01	0.03	0.7	0.069
3261		11.7	1130	3.2	4.5	<0.001	<0.01	0.14	2.6	<0.2	0.3	15.5	<0.01	0.02	1.1	0.069
3262		9.4	1050	2.7	3.1	<0.001	0.02	0.12	2.0	<0.2	0.3	15.0	<0.01	0.02	0.7	0.062
3263		10.0	150	3.8	2.4	<0.001	0.01	0.09	2.3	0.2	0.3	15.6	<0.01	0.03	0.5	0.060
3264		13.3	1470	3.7	5.4	<0.001	0.01	0,15	3.2	0.2	0.3	16.5	<0.01	0.05	0.9	0.063
3265 3266 3267 3268 3269		13.5 11.3 12.9 10.7 16.3	650 1200 640 1830 990	4.1 4.2 4.2 4.9 3.9	9,2 6,3 6,4 5,3 6,2	<0.001 <0.001 <0.001 <0.001 <0.001	0.03 0.02 0.02 0.02 0.02	0.17 0.14 0.22 0.16 0.14	3.9 2.9 3.6 2.8 3.2	0.3 0.3 <0.2 0.2 0.2	0.3 0.3 0.3 0.3	27.4 21.9 18.2 23.4 19.5	<0.01 <0.01 <0.01 <0.01 <0.01	0.12 0.07 0.10 0.09 0.06	0.6 0.4 0.5 0.5	0,063 0,051 0.051 0.049 0.060
3270 3271 3272 3273 3274 3275		14,3 12,5 16,0 14,9 18,3 14,5	1460 620 840 830 1400 1270	4.7 4.2 5.0 4.2 4.3 6.1	6.1 7.3 5.9 6.3 5.6 4.4	<0,001 <0,001 <0,001 <0,001 <0.001 <0.001	0,01 0,02 <0,01 <0,01 <0.01 <0.01	0,14 0,15 0,16 0,14 0,14 0,15	2.7 2.8 3.2 2.8 3.9 3.0	0,3 <0,2 0,3 0,4 0.5 0,4	0.4 0.4 0.4 0.4 0.4	17.5 20.5 15.4 17.5 17.2 16.2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.12 0.03 0.04 0.03 0.01 0.01	0.6 0.5 1.0 0.7 1.2 1.2	0,061 0,077 0,059 0,056 0,070 0,073
3276 3277 3278 3278 3279 3280		12.9 15.1 12.9 13.9 11.6	1000 960 1310 1020 590	4.2 4.9 4.5 5.2 4.5	7.8 6.1 6.3 6.9 5.0	<0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01 <0.01	0.15 0.12 0.12 0.15 0.15	2.7 3,0 2,7 2,6 2.1	<0.2 0,3 0,2 <0.2 0.4	0.4 0.5 0.5 0.4 0.3	17.3 19.0 16.3 18.9 22.5	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0,01 0,01 0,01 0.01	1.5 1.1 1.5 1.3	0.081 0,074 0,078 0.079 0.048

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 3 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

· · · · ·	,									
(ALS)									CERTIFICATE OF ANALYSIS	VA21223604
Sample Description	Method Analyte Units LOD	AuME-TL43 Tl ppm 0,02	AuME-TL43 U ppm 0,05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0,05	AuME-TL43 Y ppm 0,05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5		
2241	LOD	0,05	0.58	51	<0.05	5.05	21	3.4		
3241		0.04	0.39		0.08	3.86	26	1.8		
3242		0.04	0.39	90 47	< 0.05	3.29	27	2.5		
3243		0.02	0.38		0.08	3,19	42	5,0		
3244 3245		0,04	0,36	55 45	<0.05	1,55	27	1.1		
		<u> </u>								
3246		0,04	0,57	45	<0.05	13,60	30	3,9		
3247		0.03	0.21	52	< 0.05	1.79	56	1.2		
3248		0.03	0.15	45	< 0.05	1.08	32	1.0		
3249		0.03	0.20	64	< 0.05	1.87	29	0.6		
3250		0.03	0.31	44	< 0.05	3.38	25	2.8		
3251		0.04	0.48	33	< 0.05	5.74	27	2.2		
3252		0,04	0,31	53	0,09	2,37	50	3,8		
3253		0,04	0,31	51	0.11	2,56	46	2.8		
3254		0.06	0.31	69	0.13	2.84	51	3.7		
3255		0.07	0.60	58	0.09	7.03	29	2.8		
3256		0.04	0.35	49	0.11	2.25	35	3.1		
3257		0,05	0,49	66	0,18	3,34	44	3,4		
3258		0,06	0,96	36	0,21	9,97	28	3.0		
3259		0,09	1,27	39	0.06	15,35	29	3.3		
3260		0.05	0.49	55	< 0.05	4.15	24	6.0		
3261		0,03	0,34	62	0.06	2,80	26	5.2		
3262		0.02	0.20	57	0.05	1.70	19	3.7		
3263		0.03	0.23	53	< 0.05	2.09	18	2.2		
3264		0,04	0,28	64	<0,05	2,30	46	2,5		
3265		0.05	0.23	68	0.11	3,37	48	1.3		
3266		0,04	0,20	54	<0,05	2,13	48	1,6		
3267		0.06	0.21	67	0.06	3.15	45	0.8		
3268		0.03	0.23	54	< 0.05	2.55	50	1.9		
3269		0.04	0.29	58	< 0.05	3.09	44	1.1		
3270		0,05	0.41	56	<0.05	4,52	55	2,2		
3271		0,20	0,28	69	<0,05	3,00	45	8,0		
3272		0,06	0,33	56	0.11	2,67	47	3,6		
3273		0,04	0.30	52	0.17	2,56	36	3.2		
3274		0.05	0.36	47	0.11	4.11	49	5.7		
3275		0.04	0.33	46	0.11	2.70	34	6.8		
3276		0.04	0.37	49	0.15	2.24	40	5.6		
3277		0,04	0,38	42	0,12	2,84	38	3,5		
3278		0,05	0,41	39	0.14	2,10	43	4,7		
		0,05	0.39	45	0.11	2,41	42	2.9		
3279										

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax

North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 4 - A
Total # Pages: 7 (A - D)
Plus Appendlx Pages
Finalized Date: 5-NOV-2021
Account: GOLARO

														V//L L		
Sample Description	Method	WEI-21	AuME-TL43													
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0,02	0,001	0,01	0,01	0.1	10	10	0,05	0,01	0.01	0,01	0,02	0,1	1	0.05
3281		0.46	0.004	0.25	1.62	2.0	<10	190	0.32	0.10	0.56	0.08	16.10	7.2	30	2.74
3282		0.28	0.003	0.10	1.21	2.8	<10	90	0.29	0.07	0.19	0.04	7.43	6.3	22	0.84
3283		0.26	0.001	0.14	1.43	2.5	<10	120	0.31	0.08	0.33	0.08	11.80	6.6	23	0.92
3284		0.20	0,002	0.07	1.32	2.3	<10	130	0.31	0.07	0.48	0.11	9.82	6.4	21	1,58
3285		0.22	0.001	0.14	1.51	2.6	<10	110	0.27	0.07	0.26	0.05	8.22	7.2	27	0.93
3286		0,34	0,001	0.12	1,56	2.3	<10	110	0,35	0,09	0,24	0,07	10,95	7.1	26	0.92
3287		0,40	0.004	0.10	1,77	2.8	<10	160	0,42	0.09	0,32	0.05	11,45	7.4	29	0.93
3288		0,28	0.005	0.15	1,65	2.3	<10	110	0,31	0.09	0,20	0.06	10,55	6.6	22	0.87
3289		0,24	0.001	0.10	1,39	1.9	<10	120	0,32	0.10	0,28	0.07	9,90	7.1	25	0.89
3290		0,20	0.003	0.08	1,78	2.1	<10	130	0,28	0.11	0,19	0.04	8,76	6.1	18	0.92
3291		0.26	0.001	0.06	1.50	1.8	<10	80	0.28	0.08	0.19	0.04	7.79	5.8	19	0.92
3292		0.36	0,005	0.36	1,69	2,3	<10	180	0,49	0.14	1,01	0,26	21.4	12.1	26	1,79
3293		0.30	0.005	0.53	1,79	3.1	<10	310	0,47	0.10	1,03	0,12	17.15	6.3	15	0,78
3294		0.28	0.003	0.52	1.67	1.0	<10	70	0.42	0.09	0.68	0.06	11.50	3.1	7	0.40
3295		0.30	0.004	0.42	1.98	3.1	<10	170	0.49	0.10	1.22	0.19	19.45	9.0	14	0.85
3296		0.32	0.007	0.65	2.22	2.2	<10	130	0.48	0.11	1.29	0.30	17.60	4.3	18	0.76
3297		0,26	0,004	0,26	1,22	1,0	<10	120	0,30	0,07	0,93	0,15	10.60	4.4	9	0,59
3298		0,36	0,001	0,08	1,53	0.8	<10	120	0,29	0.11	0,39	0.05	7.17	7.0	19	0,69
3299		0,40	0,002	0,16	1,93	2.1	<10	80	0,38	0.12	0,20	0.05	11.30	7.8	22	0,95
3300		0.24	0.001	0.04	1,59	2.3	<10	190	0.32	0.08	0.69	0.05	14.70	9.5	36	0.87
3301		0.28	0.001	0.11	1.69	2.1	<10	190	0.29	0.13	0.24	0.06	8.91	6.5	20	0.74
3302		0.18	0.002	0.28	1.80	3.0	<10	420	0.52	0.09	1.74	0.08	13.70	4.6	17	0.63
3303		0.40	0.002	0.06	1.64	2.1	<10	110	0.44	0.08	0.33	0.08	8.65	6.5	22	0.84
3304		0.34	0.004	0.11	1.82	1.3	<10	210	0.34	0.08	0.52	0.05	14.00	5.0	22	0.54
3305		0.28	0.001	0.08	1.88	1.9	<10	140	0.49	0.09	0.26	0.09	10.40	6.6	22	0.92
3306		0,24	0,001	0.03	2,22	2,5	<10	60	0,47	0.09	0.12	0.09	5.72	5.7	15	0,95
3307		0.30	0,001	0.07	1,27	1.8	<10	130	0,27	0.06	0.31	0.04	8.07	4.6	18	0.61
3308		0.22	<0,001	0.13	1,36	2.3	<10	100	0,28	0.09	0.37	0.09	7.00	5.2	16	0.90
3309		0.32	0,002	0.11	1,54	2.8	<10	80	0,41	0.10	0.24	0.08	5.03	5.5	17	0.83
3310		0,34	0,001	0.16	1,71	2,2	<10	100	0,37	0.09	0.24	0.07	10.15	6.5	24	1,13
3311		0,32	0,003	0.17	1,77	2,3	<10	90	0,37	0,09	0,15	0,06	8,93	6,6	28	0,98
3312		0,36	0,005	0.24	1,76	3,1	<10	100	0,40	0,09	0,20	0,07	10,30	7,2	25	0,94
3313		0,28	0,002	0.13	1,59	2,7	<10	110	0,37	0,09	0,36	0,07	12,80	9,8	40	0,89
3314		0.34	0.003	0.09	1,63	1,9	<10	80	0,31	0.09	0,20	0.05	8,09	7,0	33	0,89
3315		0.36	<0.001	0.12	1,42	1,2	<10	160	0,29	0.11	0,38	0.04	7,66	4,7	24	0,71
3316		0.32	<0.001	0.09	1.84	1.8	<10	90	0.37	0.11	0.28	0.06	10.95	6.6	27	0.75
3317		0,36	0,003	0,35	2,40	2.2	<10	380	0,59	0.15	0,83	0,08	15,25	7.0	28	0,88
3318		0,50	0,002	0,05	1,42	2.2	<10	140	0,27	0.10	0,56	0,05	16,35	7.9	28	0,74
3319		0.40	<0.001	0.11	1.62	2.0	<10	120	0.30	0.08	0.30	0.09	7,04	7.2	43	0.89
3320		0.18	<0.001	0.39	1.54	3.2	<10	220	0.55	0.09	1.89	0.29	16.60	5.3	24	0.58

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 4 - B
Total # Pages: 7 (A - D)
Plus Appendix Pages
Finalized Date: 5-NOV-2021
Account: GOLARO

(ALS)	,								(CERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
Sample Description	Method	AuME-TL43														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0,2	0.01	0.05	0,05	0,02	0.01	0,005	0,01	0,2	0,1	0,01	5	0.05	0,01	0,05
3281		21.7	1.98	5.01	<0.05	0.14	0.01	0.013	0.04	3.2	18.2	0.34	379	0.39	0.03	0.69
3282		19.3	1.72	4.56	<0.05	0.05	0.02	0.012	0.04	2.7	6.5	0.26	325	0.37	0.02	0.44
3283		26.3	1.92	4.94	<0.05	0.05	0.02	0.014	0.05	3.7	10.1	0.30	356	0.35	0.02	0.62
3284		18.3	1.69	4.55	<0.05	0.06	0.03	0.016	0.07	3.1	7,5	0.28	444	0.43	0.03	0.73
3285		21.7	1.87	5.22	<0.05	0.05	0.01	0.011	0.05	2.9	8,5	0.32	465	0.38	0.02	0.47
3286		26.8	1,97	5,33	<0.05	0,06	0,02	0,012	0.04	3.5	8.1	0,32	431	0,37	0,02	0,44
3287		31.1	1,97	5,76	<0.05	0.07	0.02	0.014	0.04	4.3	9.1	0.34	307	0.40	0.03	0.66
3288		21.7	1,91	5,53	<0.05	0.09	0.02	0.015	0.04	3.5	7.3	0.27	279	0.45	0.03	0.61
3289		26.1	2,11	4,95	<0.05	0.05	0.01	0.011	0.04	3.9	7.2	0.33	364	0.40	0.02	0.45
3290		21.6	1,80	5,98	<0.05	0.12	0.03	0.012	0.04	3.5	8.1	0.21	402	0.47	0.03	0.67
3291		17.6	1.79	5.39	<0.05	0.08	0.02	0.014	0.03	3.2	7.0	0.21	290	0.44	0.02	0.64
3292		102,5	2,28	5,61	0,06	0.11	0.06	0.020	0,12	10,1	12,4	0.62	923	0.69	0,03	0.71
3293		137,5	1,78	5,59	0,05	0.12	0.14	0.016	0.06	13.6	16.0	0.31	262	0.33	0,04	0.83
3294		118.0	0.62	3.55	<0.05	0.12	0.09	0.015	0.05	7.8	12.2	0.18	250	0.20	0.04	0.56
3295		86.1	2.24	5.72	0.06	0.14	0.11	0.015	0.07	7.2	19.7	0.31	1680	1.34	0.04	0.82
3296		153.0	1.23	6.98	0.05	0.17	0.09	0.017	0.05	8.0	14.2	0.21	292	0.43	0.04	1.22
3297		59.5	1,08	4,30	<0.05	0,06	0.04	0,011	0,05	5.5	11,6	0.21	800	0,58	0,04	0.56
3298		27.4	1,89	5,52	<0.05	0.03	0.01	0,015	0,06	3.2	13,1	0.45	288	0,25	0,03	0.53
3299		19.2	2,11	6,62	<0.05	0.08	0.02	0,017	0,04	4.6	9,7	0.38	270	0,52	0,03	0.71
3300		30.1	2.56	5.35	<0.05	0.09	0.02	0.017	0.05	5.4	8.6	0.57	385	0.45	0.03	0.44
3301		26.2	1.95	5.73	<0.05	0.06	0.01	0.019	0.04	3.6	7.9	0.26	185	0.43	0.03	0.85
3302		113.5	1.47	4.32	0.06	0.21	0.11	0.016	0.02	11.8	18.8	0.24	425	0.60	0.04	0.89
3303		21.4	1.95	5.10	<0.05	0.08	0.02	0.015	0.03	3.4	7.1	0.24	214	0.64	0.03	0.86
3304		21.5	1.97	5.33	<0.05	0.09	<0.01	0.011	0.03	4.9	12.5	0.30	280	0.52	0.04	0.66
3305		22.7	2.02	5.84	<0.05	0.14	0.02	0.016	0.04	3.8	8.2	0.26	283	0.48	0.03	0.93
3306		21,6	1,99	7,19	<0,05	0,30	0,03	0,019	0,03	2.3	7,5	0,16	655	0.58	0,02	1,31
3307		18.6	1.64	3,90	<0.05	0.09	0.02	0.012	0.03	3.0	7,2	0.18	93	0.28	0.02	0.69
3308		23.0	1.74	4,93	<0.05	0.06	0.03	0.013	0.04	2.8	6,2	0.16	231	0.49	0.02	0.72
3309		21.7	1.91	5,14	<0.05	0.11	0.03	0.017	0.03	2.1	6,2	0.19	234	0.50	0.02	0.89
3310		24.2	1.82	5,26	<0.05	0,16	0.12	0,017	0,04	3.8	7,4	0,30	375	0.41	0,02	0,81
3311		21,9	1,87	5,47	<0,05	0.14	0,05	0,015	0,03	3,3	7,5	0,29	260	0.51	0,02	0,73
3312		26,9	2,15	5,41	<0,05	0.12	0,04	0,016	0,04	3,8	8,3	0,31	388	0.44	0,02	0,75
3313		44,6	2,41	5,04	0,05	0.06	0,04	0,015	0,06	5,1	8,3	0,53	383	0.39	0,02	0,55
3314		21,1	2,12	5,41	0.05	0.07	0.02	0,015	0.03	3,3	7,8	0,35	186	0.40	0.02	0,48
3315		20,5	1,51	4,40	<0.05	0.06	0.02	0,014	0.03	4,0	7,8	0,31	226	0.28	0.03	0,56
3316		18.4	2.02	5.52	<0.05	0.11	0.04	0.018	0.05	4.8	7.3	0.30	199	0.43	0.02	0.67
3317		113.0	2.28	6,32	0,07	0,17	0.04	0,021	0.05	9.7	15,7	0.45	384	0.51	0,04	1,01
3318		33.5	2.42	4,67	0,06	0,09	0.02	0.015	0.04	4.9	8.3	0.47	278	0.44	0,03	0.65
3319		23.2	2.02	5,16	<0.05	0,09	0.03	0.015	0.04	3.0	7.6	0.41	162	0.29	0,02	0.67
3320		127.0	1.57	3.96	0.06	0.15	0.08	0.014	0.03	9.2	5.5	0.30	425	0.52	0.03	0.76

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 4 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(ALS)										ERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
Sample Description	Method Analyte Units	AuME-TL43 Ni ppm	AuME-TL43 P ppm	Pb ppm	AuME-TL43 Rb ppm	AuME-TL43 Re ppm	AuME-TL43 S %	AuME-TL43 Sb ppm	AuME-TL43 Sc ppm	AuME-TL43 Se ppm	AuME-TL43 Sn ppm	AuME-TL43 Sr ppm	AuME-TL43 Ta ppm	AuME-TL43 Te ppm	AuME-TL43 Th ppm	AuME-TL43 Ti %
	LOD	0,2	10	0.2	0,1	0,001	0.01	0.05	0.1	0,2	0,2	0,2	0,01	0,01	0,2	0,005
3281		13.5 13.2	140 1100	4.3 3.4	6.8 4.0	<0.001 <0.001	<0.01 <0.01	0,18 0.16	3.5 2.4	0.6 0.3	0.4 0.3	32.4 15.8	<0.01 <0.01	0.01 0.02	1.1 0.8	0.069 0.052
3282 3283		14.9	960	3.4	6.2	<0.001	0.01	0.15	2.4	0.3	0.3	20.0	<0.01	0.02	0.6	0.052
		14.9	860	3,9	8.4	<0.001	0.01	0.15	2.6	0.3	0.4	25,2	<0.01	0.01	0.7	0.052
3284 3285		16.6	900	3,7	5,5	<0.001	0,02	0,15	2,7	0,5	0,3	20,0	<0.01	0.02	0,8	0,055
3286		16.4	1070	3,5	5.3	<0.001	<0.01	0,14	3.1	0,2	0,3	18,6	<0.01	0.03	1,0	0,067
3287		18.4	970	4.0	5.1	< 0.001	< 0.01	0.14	3.4	0.2	0.4	22.5	< 0.01	0.02	0.9	0.065
3288		13.8	1220	3.6	4.9	< 0.001	< 0.01	0.12	2.9	0.2	0.4	15.5	< 0.01	0.02	1.0	0.060
3289		14.6	1030	3.5	5.7	< 0.001	<0.01	0.15	3.6	0.2	0.3	18.9	< 0.01	0.02	0.9	0.062
3290		12.3	1440	4.6	5.0	<0.001	<0.01	0.11	3.2	0.4	0.4	13.7	<0.01	0.02	1.0	0.057
3291		12.1	1130	3.8	4.6	< 0.001	< 0.01	0.12	2.7	0.3	0.4	14.9	< 0.01	0.01	0.9	0.065
3292		16,9	1060	4.0	11,6	0,001	0.02	0,21	4.0	1,8	0.4	44,3	0,01	0.06	0,5	0,049
3293		12.7	650	3.7	4,5	0,001	0.02	0.15	2.8	1,6	0.4	33,8	0.01	0.07	0,3	0,044
3294		7.5	560	3.9	3.5	0.001	0.01	0.12	1.5	1.6	0.4	23.7	0.01	0.03	0.3	0.049
3295		11.5	860	4.4	6.9	0.001	0.05	0.15	2.4	2.6	0.5	40.3	0.01	80.0	0.3	0.047
3296		12.6	870	4.4	3.8	0.001	0.05	0.12	3.0	3.8	0.4	38.2	0.01	0.06	0.4	0.052
3297		7,2	500	2,9	4,5	0.001	0,03	0,12	1,5	2,1	0,3	31,3	<0.01	0,03	0,2	0,050
3298		11,3	360	4.7	7,3	<0,001	<0.01	0,13	2,6	<0,2	0.4	21,7	<0.01	0.01	0.9	0,078
3299		13.5	1150	4.5	7.5	<0.001	<0.01	0.14	2,9	0.5	0,5	18.8	<0.01	0.02	1,8	0.087
3300		14.9	440	2.8	7.6	0.001	<0.01	0.18	7.0	0.5	0.4	36.0	< 0.01	0.03	1.5	0.091
3301		12.0	730	4.0	4.3	<0.001	0.02	0.14	2.8	0.4	0.4	16.0	< 0.01	0.02	0.5	0.054
3302		10.8	610	3.9	2.3	0.004	0.06	0.27	2.7	2.8	0.4	70.1	0.01	0.17	0.3	0.040
3303		12.4	1120	3.5	4.0	< 0.001	< 0.01	0.12	2.4	0.5	0.4	18.9	< 0.01	0.02	0.7	0.061
3304		14,1	170	4,2	3.6	<0,001	0,01	0,11	3.4	0,5	0,5	28.2	<0.01	0,01	1,0	0,076
3305		14.4	1260	4.4	4.4	<0.001	<0.01	0,11	3.0	0,3	0,5	15,5	<0.01	0.02	0,9	0.068
3306		11,1	1170	5.7	4.2	<0,001	<0.01	0,12	2,5	<0,2	0.5	10,1	<0.01	0.02	1,1	0,088
3307		10.7	680	3.2	3.3	< 0.001	< 0.01	0.10	2.1	0.2	0.3	17.9	< 0.01	0.01	0.6	0.055
3308		9.8	1430	5.6	3.8	< 0.001	0.01	0.12	1.9	0.2	0.4	17.6	< 0.01	0.02	0.5	0.055
3309		10.3	1140	4.5	3.7	< 0.001	<0.01	0.12	1.8	0.3	0.4	12.5	< 0.01	0.03	0.5	0.052
3310		16,1	1340	3,5	5,0	<0,001	<0,01	0,12	2,5	0,2	0,4	19,1	<0,01	0,03	0,9	0,061
3311		18,9	1430	3,7	3,8	< 0.001	< 0.01	0,11	2,3	0,3	0.4	11,6	< 0.01	0.02	0.9	0,060
3312		14.7	1410	3.7	4.7	<0.001	0.01	0.14	2.7	0,2	0.4	15,0	<0.01	0.02	1,0	0.067
3313		27.1	1150	3.2	5.2	<0.001	0.01	0.19	3.5	0,3	0,3	23.5	<0.01	0.03	1.0	0.073
3314		21.9	1370	3.2	4.4	< 0.001	<0.01	0.12	2.5	<0.2	0.3	14.5	< 0.01	0.03	0.9	0.069
3315		13.5	180	4.4	5.6	<0.001	0.02	0.10	2.8	<0.2	0.4	25.0	<0.01	0.01	0.9	0.075
3316		15.1	1440	3.8	4.8	<0.001	<0.01	0.15	3.0	0.2	0.4	18.5	< 0.01	0.02	1.2	0.074
3317		22.1	580	5,4	6.3	0.001	0.02	0.16	4.7	0,5	0,6	51,8	< 0.01	0.04	1,0	0,081
3318		13.7	390	3,2	5.3	<0.001	< 0.01	0.19	4.2	0,3	0.3	35.0	<0.01	0.03	1.0	0.076
3319		32.8	1610	3.5	3.9	<0.001	<0.01	0.13	2.5	0.2	0.3	18.8	<0.01	0.01	8,0	0.064
3320		21.7	1160	3.5	3.1	0.002	0.07	0.15	1.3	1.6	0.3	79.4	0.01	0.05	0.2	0.022

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 4 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(763)	,								CERTIFICATE OF ANALYSIS VA21223604
Sample Description	Method Analyte Units LOD	AuME-TL43 Tl ppm 0,02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0,05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0,5	
3281 3282 3283 3284 3285		0.04 0.02 0.03 0.02 0.03	0.23 0.21 0.30 0.24 0.23	49 45 51 43 49	0,11 0,20 0,10 0,08 0,11	3,41 1,92 2,97 2,34 2,08	24 33 31 35 42	4.7 1.8 1.9 2.4 1.5	
3286 3287 3288 3289 3290		0,03 0.03 0.04 0.03 0.04	0,29 0,41 0,32 0,28 0,29	53 51 49 60 45	0.12 0.12 0.11 0.09 0.11	2.83 4.34 2.82 3.39 3.32	41 34 36 35 35	2.5 3.0 3.7 2.3 4.8	
3291 3292 3293 3294 3295		0.03 0,33 0.13 0.06 0.09	0.26 1.01 2.19 1.02 3.05	48 62 52 16 80	0.12 0.19 0.15 0.07 0.11	2.61 14,85 18,35 16.40 11.30	30 35 26 13 27	4.0 2.8 3.7 4.2 5.0	
3296 3297 3298 3299 3300		0.08 0,06 0.04 0.04 0.04	7.72 2.57 0.29 0.48 0.62	40 39 48 51 79	0.12 0,07 0,07 0.11 0.20	16.45 6,91 2,65 2,91 6,21	17 20 46 42 31	7.2 2.3 1.3 3.7 3.6	
3301 3302 3303 3304		0.03 0.06 0.03 0.04 0.03	0.31 1.30 0.32 0.45 0.36	52 33 52 51 51	0.11 0.16 0.10 0.07 0.11	4.00 52.9 3.15 4.29 3.47	26 20 28 24	2.3 6.4 3.7 3.8 5.3	
3305 3306 3307 3308 3309 3310		0,04 0.02 0.02 0.02 0.02 0,05	0.29 0.27 0.26 0.23 0.38	52 42 44 48 45	0.11 0.13 0.06 <0.05 0.06 0.08	1,76 2,34 2,25 1,46 2,87	32 41 18 27 26 34	12.4 3.6 2.8 4.3 6.7	
3311 3312 3313 3314 3315		0.04 0.04 0.04 0.04 0.03 0.04	0,33 0,36 0,40 0.32 0.49	47 57 69 59 42	0,08 0,07 0,07 0,07 0.07	2,50 2,84 3,90 2,35 3,56	36 38 37 29 21	5.7 5.2 2.6 3.5 2.5	
3316 3317 3318 3319 3320		0.04 0,06 0,03 0.03 0.04	0.40 1,31 0.58 0.26 3.53	51 55 72 52 43	0.06 0,05 0,05 0.09 0.10	3.14 12,30 5.06 2.28 13.05	30 27 25 36 17	5.3 6.1 3.5 3.8 5.5	

CERTIFICATE OF ANALYSIS VA21223604

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 5 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

Sample Description	Method	WEI-21	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0,001	0,01	0,01	0,1	10	10	0,05	0,01	0,01	0,01	0,02	0,1	1	0,05
3321		0.38	<0.001	0.14	1.97	2.8	<10	150	0.51	0.10	0.63	0.05	17.60	7.0	28	0.75
3322		0.46	<0.001	0.05	1.33	1.3	<10	110	0.21	0.08	0.40	0.03	5.27	4.1	17	0.70
3323		0.30	0.002	0.06	1.41	2.0	<10	60	0.30	0.08	0.16	0.04	6.05	5.3	17	0.94
3324		0.32	<0,001	0,08	1,21	1,8	<10	70	0,29	0,08	0,21	0,06	6,29	5,6	17	0,78
3325		0.42	<0,001	0,11	1,43	2,3	<10	70	0,32	0,07	0,21	0,06	8,08	5,4	21	0,89
3326		0.36	0,001	0,07	1,58	2,2	<10	80	0,37	0,07	0,19	0,04	9,17	5,7	20	0,89
3327 3328 3329		0.32 0.38 0.34	<0.001 0.001 <0.001	0.08 0.09 0.13	1.31 1.35 1.44	2.1 2.1 1.7	<10 <10 <10	100 100 130	0.27 0.33 0.31	0.07 0.06 0.12	0.25 0.22 0.50	0.04 0.05 0.07	8.39 7.58 11.20	5.3 5.8 6.4	20 20 20 20	0.75 0.86 0.88
3330 3331		0.40 0.28	0.001	0.22	1.55 1.42	2.0 1.5	<10 <10	100 170	0.33	0.12	0.24	0.07	9.43 5.92	6.8 4.6	13	1.03
3332		0,32	0,001	0.12	1,63	1,8	<10	80	0,32	0,09	0,32	0.04	8,27	5,2	18	0,81
3333		0,44	<0,001	0.18	1,77	1,4	<10	260	0,33	0,10	0,45	0.04	12,40	7,5	27	0,95
3334		0.38	0.001	0.36	1,45	1,2	<10	170	0.36	0.08	0,97	0.10	13.10	5.5	20	1.06
3335		0.34	<0.001	0.13	1,60	1,7	<10	140	0.40	0.09	0,29	0.09	9.78	8.2	22	0.97
3336		0.36	0.004	0.12	1.30	1.3	<10	120	0.26	0.08	0.32	0.09	7.92	7.4	23	0.78
3337		0,36	0,002	0,05	1,28	1,5	<10	160	0,25	0,08	0,30	0,05	8,01	6.8	24	0.72
3338		0,44	0,001	0,07	1,62	1.6	<10	110	0,31	0,09	0,26	0,05	8,88	5.0	17	0.82
3339		0.36	0,001	0.08	1.62	1.7	<10	70	0.29	0.10	0,29	0.05	9.46	4.3	13	0,63
3340		0.52	0,001	0.05	1.58	1.7	<10	130	0.36	0.10	0.54	0.06	12.80	6.6	22	0,74
3341		0.36	0,001	0.17	1.72	0.9	<10	150	0.39	0.11	0,80	0.13	15.15	6.0	18	0,80
3342		0.40	0.001	0.08	1.45	1.4	<10	70	0.25	0.09	0.38	0.07	7.46	5.9	18	0.84
3343		0.46	0.002	0.15	1.63	2.1	<10	80	0.38	0.10	0.27	0.12	10.55	7.0	22	0.85
3344		0.50	0,001	0,22	2.10	1.8	<10	120	0.45	0.12	0.24	0,09	10,20	10.5	27	1.13
3345		0.42	0.002	0,23	2.06	1.7	<10	110	0.44	0.12	0.25	0.09	9,39	10.6	23	1.14
3346		0,48	0,001	0,10	1.92	2.2	<10	110	0.39	0,10	0,28	0,08	9,42	10.6	24	1,02
3347		0.56	0,002	0.22	1.92	2.1	<10	110	0.45	0.12	0,20	0.08	11,65	9.4	25	0.97
3348		0.38	0,002	0.19	2.15	2.6	<10	100	0.50	0.14	0,25	0.08	14,50	11.1	26	1.23
3349		0.38	0,001	0.45	1.54	2.7	<10	240	0.54	0.11	1,11	0.22	15,85	5.7	38	1.51
3350 3351		0,48	0,001	0,18	1,87	2,7	<10 <10	110	0,43	0,09	0,23	0,08	8,67 10,75	6,8 5,7	23 20	1,09 0,72
3352		0,38	0,004	0,08	0.90	1.1	<10	70	0,19	0,06	0,25	0,03	6,55	5.1	19	0,66
3353		0,44	0,001	0,09	0.88	0.7	<10	70	0,21	0,06	0,18	0,04	6,03	4.0	12	0,58
3354		0.38	0.001	0.09	1.14	1.1	<10	100	0,22	0.06	0,27	0.04	7.39	5.5	17	0.63
3355		0.46	0.005	0.06	1.01	1.0	<10	90	0,23	0.07	0,26	0.03	5.34	4.9	17	0.64
3356 3357 3358 3359		0.46 0.42 0.40 0.32 0.34	0.001 <0,001 0.002 0.002 0.001	0.08 0.07 0.08 0.07 0.13	1.24 1.14 1.91 1.73 1.97	1.7 1.1 2.1 2.0 1.9	<10 <10 <10 <10 <10	90 90 100 90	0.28 0.26 0.37 0.39 0.43	0.07 0.06 0.09 0.08 0.09	0.29 0.26 0.21 0.21 0.25	0.05 0.04 0.06 0.05 0.06	8.17 7,71 11,85 11,25 12,45	6.9 5.8 6.6 6.2 8.0	27 19 23 22 21	0.79 0.80 1.04 0.97 1.33

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 5 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(763)									(ERTIFI	CATE O	F ANAL	YSIS	VA2122	3604	
Sample Description	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0,2	0,01	0,05	0,05	0,02	0,01	0,005	0,01	0,2	0,1	0.01	5	0.05	0,01	0,05
3321		51,8	2.19	5.78	0.06	0,07	0.03	0.021	0.03	9.9	11.9	0.32	317	0.32	0.03	0.79
3322		13.3	1.59	4.57	<0.05	0.03	0.01	0.011	0.03	2.3	9.9	0.18	103	0.21	0.03	0.50
3323		16.7	1.75	4.96	<0.05	0.12	0.03	0.014	0.03	2.6	6.8	0.20	202	0.52	0.02	0.70
3324		15,9	1,71	4,60	<0.05	0,06	0,03	0,012	0,04	2,5	6,2	0,22	417	0,49	0,02	0,62
3325		19,2	1,91	4,63	<0.05	0,06	0,02	0,014	0.03	3,1	6,0	0,21	224	0,45	0,02	0,65
3326		20,0	1,85	4,70	<0.05	0.11	0,02	0,014	0.03	3,3	6.0	0,22	347	0,64	0.02	0,66
3327		18.6	1,80	4,24	<0.05	0.06	0.02	0.013	0.03	3.0	5.9	0,20	173	0.43	0.02	0.60
3328		19.2	1,95	4,35	<0.05	0.05	0.02	0.015	0.04	2.9	5.0	0,21	262	0.59	0.02	0.49
3329		32.6	1,95	4,33	<0.05	0.04	0.02	0.017	0.04	3.9	9.3	0,27	266	0.81	0.03	0.69
3330 3331		21.5 11.1 17,0	1.99 1.66 1.87	4.91 5.20 5,38	<0.05 <0.05 <0.05	0.07 0.06 0.09	0.03 0.03 0.04	0.015 0.016 0.017	0.05 0.04 0.04	3.1 2.3 3.3	7.3 6.0 6.2	0.26 0.15 0,22	476 559 168	1.15 1.54 0,61	0.02 0.02 0.03	0.56 0.67 0.87
3332 3333 3334 3335		24,7 94.4 26.9	2.21 1.75 2.02	5,45 3.67 5.24	<0,05 <0,05 0.05 <0.05	0,08 0.07 0.03	0.03 0.06 0.03	0.017 0.018 0.013 0.015	0.06 0.05 0.07	4,0 7.0 3.6	13.7 13.3 8.7	0,37 0.30 0.37	203 435 427	0,45 1.16 0.70	0,03 0.04 0.02	0,60 0,65 0.57
3336		21.5	2.00	4.71	<0.05	0.03	0.02	0.014	0.08	2.9	7.6	0.34	566	0.51	0.02	0.46
3337		18,9	2.06	4.38	<0.05	0,03	0,01	0.010	0,07	2.7	7.4	0,33	514	0,48	0,02	0.45
3338		20,5	1.81	5.07	<0.05	0,08	0,02	0.017	0.04	3.3	8.2	0,21	207	0,32	0.03	0.75
3339		16.3	1,59	4.97	<0.05	0.11	0,03	0.014	0.03	3.5	5.9	0,16	158	0.46	0.03	0,91
3340		46.7	2.02	4.83	0.06	0.12	0.02	0.016	0.04	7.8	11.4	0.33	233	0.36	0.03	0.82
3341		47.0	1,76	4.40	0.06	0.09	0,03	0.015	0.04	6.7	18.5	0,29	518	0.53	0.04	0,75
3342		15.0	1.78	5.13	<0.05	0.06	0.02	0.013	0.04	2.6	8.9	0.26	236	0.56	0.03	0.86
3343		29.6	2.30	5.34	0.05	0.08	0.02	0.018	0.04	4.1	7.1	0.31	272	0.77	0.02	0.66
3344		47,4	2.59	7,23	0.06	0,10	0.02	0.020	0.05	3.9	14.1	0.54	408	0,97	0.02	0.66
3345		49,2	2.48	7,20	0.05	0,08	0.03	0.019	0.07	3.5	12.7	0.52	355	0,92	0.02	0.83
3346		42,9	2,30	6,81	0,05	0.11	0.03	0.015	0,07	3.6	10.9	0.59	690	0,86	0.02	0,63
3347		36,4	2,24	6,50	0.05	0.11	0.03	0.018	0.06	4.0	10.9	0.46	484	0.69	0.02	0.51
3348		54,0	2,64	7,36	0.06	0.05	0.03	0.021	0.06	5.1	11.4	0.53	518	0.81	0.02	0.54
3349		323	2,02	3,86	0.09	0.11	0.19	0.016	0.04	14.2	20.2	0.37	267	0.89	0.03	0.58
3350 3351		37,8 29,7	2.12 1.70	6,33 4,24	0,05	0,09	0,03	0,018	0,06	4.7 6.6	9,5	0,29	300	0,43	0,03	0,56 0,34
3352		22.6	1,83	3,80	0,05	0,02	0.02	0.009	0.04	3.4	7.1	0,30	145	0,22	0,03	0,24
3353		16.4	1,31	3,56	<0.05	0,04	0.01	0.010	0.03	2.8	5.8	0,22	174	0,19	0,03	0,27
3354		22.5	1,71	4,36	<0.05	0.04	0.01	0.012	0.04	3.4	7.3	0,32	178	0,20	0.03	0,34
3355		18.1	1,59	4,32	<0.05	0.02	0.02	0.010	0.03	3.0	6.7	0,27	147	0,23	0.03	0,39
3356		29.4	2.33	4.68	0.05	0.03	0.01	0.011	0.04	4.0	8.4	0.39	247	0.31	0.03	0.35
3357		21.2	1.88	4,65	0,05	0,02	0,01	0.013	0.04	3.7	7.4	0,31	199	0,27	0.03	0,36
3358		26.7	2.09	6,38	0,06	0,13	0,03	0.016	0.04	4.8	8.8	0,29	322	0,46	0.03	0,56
3359		22.1	2.05	5,76	0,05	0,11	0,04	0.017	0.04	4.4	7.6	0,27	242	0,48	0.02	0.55
3360		68.8	2.24	6.76	0.07	0.10	0.04	0.020	0.05	4.8	11.7	0.41	264	0.41	0.03	0.52

CERTIFICATE OF ANALYSIS VA21223604

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD. **SUITE 2801** 1166 MELVILLE ST. VANCOUVER BC V6E 4P5

Page: 5 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021

Account: GOLARO

										CEICHIII	CATEO		1 313	VMZIZZ	.5001	
	Method		AuME-TL43				AuME-TL43	AuME-TL43 Sb			AuME-TL43			AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Ni	ppm	Pb	Rb	Re ppm	S %	ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta	Te ppm	Th ppm	Ti %
Sample Description	Units LOD	ppm 0.2	10	0.2	ppm 0.1	0.001	0,01	0.05	0.1	0.2	0.2	0.2	ppm 0,01	0.01	0.2	0.005
3321		19,0	360	4,5	3.9	<0.001	0.01	0,15	4.1	0.5	0.4	34.4	<0.01	0.02	0.7	0,063
3322		10.2	200	3.5	3.2	< 0.001	0.01	0.10	1.7	0.2	0.4	22.2	< 0.01	0.01	0.4	0.060
3323		10.2	1070	4.7	3.7	< 0.001	0.01	0.13	1.8	<0.2	0.4	12.6	< 0.01	0.01	0.9	0.069
3324		10.4	990	4,6	3,9	<0,001	0,01	0.13	1,7	0,2	0.4	14,9	<0,01	0,01	0,5	0,058
3325		11,2	1150	3,5	3.7	<0.001	0.02	0.14	2,2	0.2	0.3	14.1	<0.01	0.02	0.6	0,060
3326		11.9	1070	3,5	4,2	<0,001	<0,01	0.13	2.3	0,3	0,4	12.6	<0.01	0.02	8,0	0,063
3327		10.7	1090	3.1	3.9	< 0.001	<0.01	0.13	2.1	0.2	0.3	14.9	< 0.01	0.01	0.6	0.056
3328		10.9	1590	3.1	5.2	< 0.001	<0.01	0.13	2.3	0.3	0.3	13.8	< 0.01	0.02	0.6	0.050
3329		14.4	560	3.7	4.6	< 0.001	0.01	0.14	2.2	0.3	0.3	25.7	< 0.01	0.03	0.4	0.055
3330		13.5	1260	3.6	5.6	<0.001	<0.01	0.14	2.4	0.2	0.3	15.0	<0.01	0.02	0.7	0.053
3331		7.4	2140	4.9	5.8	< 0.001	0.03	0.10	1.5	0.2	0.4	14.2	< 0.01	0.02	0.5	0.044
3332		9.7	1240	3,8	4.1	<0.001	0,01	0.11	2,2	0.3	0.4	19,9	<0.01	0.02	0.6	0,065
3333		16.7	470	3.5	9.2	<0.001	0.02	0.15	3.3	0.4	0.4	22,4	<0.01	0.03	0.7	0.059
3334		15.8 14.0	450 1090	3.2 4.6	9.9 7.5	0.004 <0.001	0.03 0.02	0.15 0.15	2.3 2.4	1.3 0.2	0.3 0.3	39.5 20.5	<0.01 <0.01	0.07 0.02	0.3 0.7	0.050 0.060
3335																
3336		14.0	920	3.5	5.9	< 0.001	0.02	0.14	2.3	0.4	0.3	23.9	<0.01	0.02	0.8	0.068
3337		13.7	860	3,2	6,0	<0.001	0,02	0,16	2,3	0,2	0,3	19,7	<0.01	0.01	0.7	0,063
3338		10,0	570	3,8	4,3	<0,001	0,02	0.10	2,2	0,3	0.4	18,2	<0.01	0,01	0.7	0,073
3339		7.2	1310	3,5	3.3 4.5	< 0.001	0.02	0.09	1.7	0.3	0.4	18.8	< 0.01	0.02	0.6	0.063
3340		14.0	330	3.5		<0.001	0.01	0.15	3.0	0.2	0.4	31.1	<0.01	0.02	0.9	0.077
3341		12.1	280	4.3	4.6	<0.001	0.01	0.12	2.8	0.7	0.4	40.5	< 0.01	0.03	0.7	0.069
3342		10.0	320	3.6	4.7	< 0.001	0.03	0.11	2.1	0.2	0.4	23.8	<0.01	0.02	0.5	0.074
3343		11.1 17,5	950 710	3.2	4.4	<0.001	<0.01	0.15	2.9	0.3	0.3	18.3	< 0.01	0.03	0.9	0.074 0.0 8 4
3344 3345		15,0	840	4,0 4,1	6,3 7,6	<0,001 <0,001	<0,01 <0,01	0,20 0,20	3,3 3,1	0,2 0,4	0,4 0,4	21,9 18,3	<0,01 <0,01	0,03 0,02	1.1 0.9	0,069
3346		15,3	1210	3,9	8.0	<0.001	<0.01	0.15	2.8	0.3	0.4	22,2	<0.01	0.03	1.1	0,075
3347		15.6 16.9	1280 810	4.0 4.9	7.7 8.4	<0.001 <0.001	<0.01	0.17 0.19	3.3 3.6	0.3 0.3	0.4 0.5	17.9 21.4	<0.01 <0.01	0.03 0.06	1.3 1.0	0.074 0.0 8 5
3348		23.8	540	3.5	5.0	0.003	<0.01 0.03	0.19	4.6	1.3	0.3	50.7	0.01	0.00	0.3	0.065
3349 3350		16,7	1650	4,0	4,9	<0,003	<0.03	0.25	3,5	0,3	0.3	20,9	<0.01	0.05	1.0	0,059
3351		13,1 10,5	340 340	3,2 2,3	4,9 3,8	<0,001 <0,001	0,01 0,01	0,15 0,13	3,4 2,2	0,4 0,2	0,3 0,3	23,2 20,7	<0,01 <0,01	0,01 <0,01	0.7 0.8	0,059 0,069
3352		7,4	210	2,6	3,9	<0.001	0,01	0.09	1,9	<0.2	0,3	15.7	<0.01	<0,01	0.5	0,059
3353 3354		10.5	240	2.9	4.8	<0.001	0.02	0.09	2.5	0.2	0.2	21.5	<0.01	0.02	0.6	0.061
3355		9.6	340	3.6	4.0	<0.001	<0.01	0.12	2.2	0.2	0.3	20.2	<0.01	0.02	0.5	0.052
3356		15.3	540	2.9	4.9	<0.001	0.01	0.19	3.2	<0.2	0.3	22.7	<0.01	0.01	0.7	0.068
3357		11,0	430	3,3	4.9	<0.001	0.01	0.19	2,7	0,3	0.3	21,5	<0.01	0.01	0.7	0,063
3358		14,5	1300	4,3	5,5	<0,001	<0.01	0,13	3.6	0,3	0,4	17,8	<0,01	0,03	1.1	0,066
3359		12.6	1190	3.8	5,1	<0.001	<0.01	0.13	3.2	0.3	0.4	17.5	<0.01	0,03	1.1	0,065
3360		12.5	920	4.1	8.3	< 0.001	<0.01	0.12	3.5	0.3	0.4	18.9	<0.01	0.03	1.0	0.074
3300		1	020		0.0	40.007	40.0.	J., E	0.0				10101	0.00		0.07

CERTIFICATE OF ANALYSIS VA21223604

ALS Canada Ltd,
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 5 - D
Total # Pages: 7 (A - D)
Plus Appendix Pages
Finalized Date: 5-NOV-2021
Account: GOLARO

									CERTIFICATE OF ANALYSIS VALUE 25004
		AUME TLAS	A.ME TI 42	AuME-TL43	AUME TLAS	AuME-TL43	A.ME TI 43	ALIME TI 42	
	Method	TI TI	U U	V V	W W	Y Y	Zn Zn	Zr Zr	
	Analyte	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	Units LOD	0.02	0.05	1	0.05	0.05	2	0.5	
3321		0.05	0,71	54	<0.05	10,00	22	2.7	
3322		0.02	0.24	42	< 0.05	1.89	17	1.0	
3323		0.03	0.28	49	0.07	1.79	26	5.2	
3324		0,03	0,23	47	0,06	1,68	31	2,2	
3325		0.03	0.28	53	0.05	2,37	26	2.7	
3326		0,03	0,33	51	0,05	2,47	28	4,6	
3327		0.03	0.28	50	< 0.05	2.43	26	2.5	
3328		0.03	0.27	54	< 0.05	2.05	35	2.0	
3329		0.03	0.36	52	< 0.05	3.71	33	1.7	
3330		0.04	0.32	52	0.07	2.26	48	2.6	
3331		0.03	0.22	37	0.05	1.43	42	2.1	
3332		0,03	0.31	51	< 0.05	2,46	23	4.0	
3333		0,03	0,34	54	<0.05	3,77	35	3.2	
3334		0.05	0.85	40	< 0.05	8.22	21	2.7	
3335		0.04	0.35	51	0.05	2.54	40	1.3	
3336		0.03	0.26	54	< 0.05	1.88	46	1.1	
3337		0,03	0,24	56	< 0.05	1,83	31	1,2	
3338		0,03	0,32	50	< 0.05	3,04	20	3,2	
3339		0,02	0.37	41	< 0.05	2,83	19	4.7	
3340		0.03	0.42	55	<0.05	8.33	22	5.1	
3341		0.04	0.34	42	< 0.05	6.97	23	3.4	
3342		0.03	0.28	51	0.05	2.15	18	2.5	
3343		0.04	0.39	69	0.11	3.38	31	3.8	
3344		0,04	0.37	69	0.06	2,73	47	3.7	
3345		0,05	0,35	66	0.07	2,61	51	3.1	
3346		0,06	0,30	58	0.10	2,29	52	4,3	
3347		0.05	0.37	56	0.39	2.81	52	4.6	
3348		0.06	0.42	72	0.11	3.36	54	2.3	
3349		0.04	0.97	49	0.13	37.8	27	3.1	
3350		0,13	0,41	53	0,07	4,54	38	3,0	
3351		0,10	0,34	50	0,06	6,45	23	1.4	
3352		0,10	0,27	56	< 0.05	2,60	26	0.9	
3353		0,07	0,20	38	<0.05	2,13	26	1.6	
3354		0.04	0.28	52	< 0.05	2.89	28	1.5	
3355		0.03	0.22	47	<0.05	2.35	21	0.9	
3356		0.03	0.28	72	0.06	3.33	31	1.4	
3357		0,03	0,25	58	0,07	3,00	29	0,8	
3358		0,05	0.36	56	<0.05	4,42	39	5.6	
3359		0,05	0.35	56	0.05	3,45	31	4.9	
3360		0.04	0.38	61	< 0.05	5.82	38	4.8	

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 6 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(ALS	,							1.0,		Hall Lake	-					
									(CERTIFI	CATE O	F ANAL	YSIS	VA212	23604	
Sample Description	Method	WEI-21	AuME-TL43													
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0,001	0,01	0.01	0.1	10	10	0.05	0.01	0.01	0,01	0,02	0.1	1	0.05
3361		0.36	0.001	0.11	1,96	3.0	<10	120	0.44	0.09	0.22	0.05	13.30	9.2	20	2,10
3362		0.36	0.003	0.09	1,52	0.9	<10	90	0.22	0.07	0.40	0.04	6.45	9.1	15	1,01
3363		0.40	0.003	0.14	1,71	3.0	<10	130	0.38	0.08	0.33	0.07	12.05	7.2	29	1,07
3364		0.40	0.002	0.14	1,71	2.9	<10	160	0.41	0.08	0.63	0.08	15,50	9.6	28	3,03
3365		0.36	0.001	0.15	2,45	3.4	<10	260	0.54	0.10	0.87	0.14	20.9	13.9	27	7,03
3366		0,36	<0,001	0,24	2.76	4,2	<10	270	0,63	0,11	0,66	0,13	23,2	12.5	27	7,05
3367		0.44	0.002	0.10	1.67	2,3	<10	130	0.36	0.09	0.22	0.06	11,60	5.8	19	0.85
3368		0.28	0.002	0.20	1.81	1,6	<10	360	0.32	0.10	0.56	0.08	15,90	5.8	25	0.44
3369		0.34	0.011	0.14	1.26	2,2	<10	170	0.25	0.07	0.25	0.15	9,46	6.6	21	0.64
3370		0.42	0.010	0.12	1.17	1,6	<10	170	0.26	0.08	0.28	0.10	8,76	6.2	21	0.57
3371		0.40	0.002	0.12	1.40	2.3	<10	140	0.25	0.07	0.24	0.08	8.02	5.8	22	1.00
3372		0.30	0,001	0.06	1,25	1,3	<10	190	0.21	0.07	0.28	0.17	7.17	6.2	21	0.45
3373		0.32	0,016	0.22	1,86	1,6	<10	200	0.34	0.09	0.28	0.12	10.70	7.5	18	0.76
3374		0.38	0.003	0.11	1.50	1.9	<10	150	0.29	0.08	0.29	0.08	9.00	7.4	30	0.84
3375		0.34	0.002	0.14	1.64	2.3	<10	120	0.32	0.08	0.22	0.11	10.05	5.6	20	1.06
3376		0.38	0.002	0.09	1.71	2.1	<10	120	0.39	0.09	0.18	0.05	10.45	5.8	23	1.03
3377		0.48	<0,001	0.08	1,42	3.8	<10	140	0,30	0,07	0.34	0,06	12,00	7.4	30	0,82
3378		0.44	0,002	0.23	1,51	2.4	<10	100	0,29	0,08	0.30	0,14	9,33	7.2	30	0,90
3379		0.48	0,006	0.17	1,55	1.4	<10	180	0.34	0,09	0.36	0,06	16,50	6.5	31	0,75
3380		0.34	0.001	0.13	1.60	1.7	<10	80	0.31	0.07	0.19	0.06	6.98	5.9	20	0.74
3381		0.46	0,001	0.09	1.54	1.9	<10	80	0.32	0.07	0.21	0.06	8.24	6.7	24	0,81
3382		0.40	0.002	0.10	1.55	1.7	<10	70	0.28	0.08	0.21	0.04	8.54	6.6	26	0.84
3383		0.32	0.004	0.11	1.73	2.0	<10	70	0.36	0.10	0.19	0.05	9.64	6.1	20	0.91
3384		0.38	0,003	0.11	1,41	1.6	<10	140	0.29	0.09	0.32	0.06	8.06	7.0	17	0,94
3385		0.36	0.002	0.10	2,17	1.8	<10	130	0.49	0.10	0.25	0.07	12.50	7.7	20	1,11
3386		0.48	0,002	0,03	1,88	2,0	<10	110	0,40	0,10	0,28	0,05	7,55	8,0	26	0.88
3387		0.32	0.002	0.06	1,36	1.8	<10	100	0.30	0.08	0.32	0.06	10,15	7.7	23	0.60
3388		0.34	0.001	0.10	1,67	1.8	<10	100	0.37	0.09	0.20	0.06	10,45	8.1	18	1.10
3389		0.32	0.001	0.07	1,49	1.5	<10	90	0.31	0.09	0.20	0.05	8,94	7.1	17	0.85
3390		0.30	0,004	0,04	1,34	1,5	<10	80	0,28	0,08	0,21	0.04	7,80	6,6	18	0.81
3391		0,38	0,002	0,04	1,48	1,4	<10	80	0,30	0,08	0,21	0,04	9,14	7.1	18	0,91
3392		0,34	0,001	0,04	1,47	1,6	<10	100	0,27	0,08	0,29	0,04	9,64	6.1	17	0,62
3393		0,40	0,001	0,09	1,59	1,1	<10	160	0,33	0,09	0,74	0,05	9,59	4.9	14	0,70
3394		0,44	0.001	0.16	1.67	2,3	<10	110	0,35	0.11	0,24	0.06	10.55	8.9	27	0.80
3395		0,46	0.002	0.10	1.52	1,1	<10	120	0,31	0.10	0,39	0.06	10.05	7.1	23	0.81
3396		0.46	0.001	0.20	2.21	1.6	<10	220	0.44	0.12	0.52	0.10	14.75	6.1	19	0.78
3397		0.44	0,007	0,07	1,50	3,0	<10	140	0.37	0.12	0.76	0,08	18,00	12.4	32	1,14
3398		0.34	0,001	0,24	1,89	1,4	<10	170	0.39	0.13	0.55	0,08	13,15	6.7	18	0,79
3399		0.34	0.001	0.06	2.19	2.5	<10	100	0.47	0.11	0.26	0,06	10.00	9.9	21	1,48
3400		0.42	0.002	0.07	1.93	2.4	<10	100	0.43	0.11	0.21	0.07	11.35	9.0	21	1,23

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 6 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(AL3)	,										j					
										CERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
Sample Description	Method	AuME-TL43														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0,2	0,01	0.05	0,05	0,02	0,01	0,005	0.01	0,2	0,1	0,01	5	0,05	0,01	0,05
3361		70.4	2,45	6.87	0.06	0.11	0.03	0.020	0.07	4.9	11.8	0.43	244	0,31	0.03	0.41
3362		50.3	2,08	5.61	0.06	0.05	0.02	0.013	0.07	2.9	12.5	0.69	301	0,21	0.03	0.35
3363		40.8	2,15	5.77	0.07	0.05	0.04	0.018	0.07	6.8	9.3	0.36	234	0,33	0.03	0.52
3364		60.7	2,67	5.61	0.07	0.08	0.04	0.021	0.06	8.2	11.4	0.51	293	0,29	0.03	0.53
3365		85.6	3,09	7.47	0.09	0.16	0.07	0.030	0.11	9.3	19.2	0.75	797	0,31	0.03	0.78
3366		102,5	3,16	8.31	0,12	0.16	0.17	0,029	0.10	12.2	21,2	0.72	567	0.36	0,04	0.53
3367		23.5	2.07	5.29	0.05	0.12	0.03	0,018	0.03	3.7	6.9	0.25	221	0.30	0.03	0.54
3368		25.7	2.07	5.55	0.06	0.11	0.04	0,019	0.05	6.4	15.2	0.30	379	0.22	0.03	0.65
3369		29.1	1.95	4.46	<0.05	0.03	0.03	0,016	0.06	2.8	7.3	0.32	740	0.42	0.02	0.31
3370		24.6	2.00	4.25	<0.05	0.04	0.02	0,013	0.08	3.1	6.7	0.33	454	0.36	0.02	0.28
3371		25.7	1.90	4.81	<0.05	0.05	0.02	0.016	0.05	2.7	7.2	0.30	374	0.33	0.03	0.40
3372		20,2	1.93	4.42	<0.05	0.03	0.02	0.016	0.09	2.3	6,5	0.28	906	0,51	0,03	0.32
3373		48,0	2.57	6.78	0.05	0.08	0.02	0.022	0.11	3.6	8.0	0.34	653	0,41	0,03	0.39
3374		26.5	2.24	5.19	0.05	0.04	0.02	0.015	0.05	3.4	7.9	0.38	314	0.43	0.02	0.41
3375		17.6	1.75	5.36	<0.05	0.11	0.03	0.015	0.04	3.3	6.9	0.25	417	0.42	0.03	0.65
3376		17.4	1.87	5.41	<0.05	0.15	0.03	0.018	0.04	3.5	6.9	0.25	216	0.50	0.03	0.66
3377		26.2	2.03	4,93	0,05	0,05	0,02	0.014	0,05	4.5	7,6	0,37	163	0.40	0,03	0,56
3378		32.0	2.40	5.02	0,05	0,06	0.03	0.016	0.03	4.1	7,1	0,35	340	0.40	0,02	0,51
3379		36.6	2.16	5.15	0,07	0,07	0.03	0.015	0.04	9.0	9,5	0,42	395	0.27	0,03	0,34
3380		18.7	1.91	4.66	<0.05	0.11	0.03	0.013	0.03	2.9	6.0	0.23	203	0.35	0.01	0.58
3381		25.3	2.16	4.66	<0.05	0.09	0.02	0.013	0.04	3.6	6.5	0.30	204	0.32	0.01	0.54
3382		18.1	1.76	5.05	<0.05	0.09	0.02	0.013	0.03	4.0	6.5	0.29	243	0.30	0.02	0.72
3383		23.0	1.93	5.61	<0.05	0.13	0.03	0.015	0.04	4.0	7.9	0.26	163	0.38	0.02	0.88
3384		23.2	2.01	4.85	<0.05	0.07	0.03	0.014	0.06	3.2	7.5	0.26	321	0.47	0.02	0.63
3385		45.0	2.22	6.47	<0.05	0.17	0.03	0.019	0.07	4.2	10.1	0.36	397	0.58	0.02	0.92
3386		30,2	2.46	5,90	<0.05	0,22	0,02	0.015	0,05	3.7	9.8	0,49	244	0.41	0,01	0.65
3387		27,9	2.43	4,49	0.05	0.06	0.02	0.014	0.04	4.4	6.3	0.37	463	0.56	0.01	0.38
3388		30,5	2.26	5,34	<0.05	0.07	0.02	0.016	0.04	4.2	7.9	0.29	359	0.52	0.02	0.42
3389		24,7	2.00	4,95	<0.05	0.06	0.02	0.015	0.06	3.4	7.3	0.28	355	0.48	0.02	0.49
3390		23,8	1.93	4,73	<0.05	0,04	0,03	0.013	0,04	3.2	7.1	0,28	248	0.40	0,02	0.48
3391		27,6	2,09	5,09	<0.05	0,06	0,02	0,014	0.04	3.8	7,5	0,29	323	0,39	0,02	0.42
3392		21,9	1,89	4,77	<0.05	0.09	0,03	0,014	0.04	3.7	7,0	0,24	115	0,34	0,02	0.68
3393		26,8	1,55	4,33	<0.05	0,07	0,02	0,015	0.04	5.4	11,3	0,29	123	0,23	0,03	0.77
3394		27,7	2,15	5,53	<0.05	0.10	0.02	0,014	0.05	4.5	9.9	0,44	165	0,44	0.02	0.69
3395		27,9	1,99	4,94	0.05	0.11	0.01	0,013	0.05	4.4	11,7	0,42	231	0,25	0.02	0.45
3396		40.3	1.98	6.11	0.05	0.12	0.04	0.018	0.06	6.0	20.3	0.32	228	0.23	0.03	0.77
3397		69.8	3,09	5.10	0.10	0.06	0.04	0.019	0.12	8.7	9.8	0.71	563	0.46	0,03	0.27
3398		39.7	2,05	5.47	0.05	0.08	0.03	0.017	0.06	6.9	18.9	0.38	297	0.21	0.03	0.69
3399		44.3	2.33	7.27	<0.05	0.11	0.03	0.019	0.06	4.3	12.7	0.55	472	0.50	0.02	0.75
3400		34.3	2.27	6.12	<0.05	0.14	0.04	0.019	0.05	4.9	9.2	0.39	460	0.56	0.02	0.77

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 6 - C Total # Pages: 7 (A - D) Plus AppendIx Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(ALS	,								(ERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
Sample Description	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0,2	10	0,2	0,1	0,001	0,01	0,05	0,1	0,2	0,2	0,2	0,01	0,01	0,2	0,005
3361		11.4	1060	4.3	12.1	<0.001	<0.01	0.16	4.3	0.3	0.5	17.6	<0.01	0.03	1.2	0.066
3362		9.3	240	3.3	14.6	<0.001	<0.01	0.10	2.9	0.3	0.3	26.9	<0.01	0.03	0.6	0.093
3363		18.8	1060	3.8	5.7	<0.001	<0.01	0.15	3.6	0.2	0.4	26.7	<0.01	0.02	0.8	0.064
3364		16.4	570	3.4	6.9	0.001	<0.01	0.19	5.8	0.3	0.3	36.0	<0.01	0.02	1.0	0.066
3365		18.7	670	4.9	15.7	<0.001	0.01	0.18	7.4	0.5	0.5	43.0	<0.01	0.02	1.2	0.065
3366 3367 3368 3369 3370		19,7 11.1 10.7 13.8 13.1	540 1760 190 1050 600	4,6 4.0 5.1 5.5 3.8	12,8 4.7 4.3 4.5 5.4	0,001 <0.001 <0.001 <0.001 <0.001	<0,01 <0.01 0.01 0.01 0.01	0,18 0.11 0.12 0.12 0.12	8,8 3,3 3,8 2,9 3,0	0,5 0.2 0.4 0.3 0.3	0,5 0.4 0.4 0.3	37,4 15.6 24.9 16.9 18.8	<0.01 <0.01 <0.01 <0.01 <0.01	0,04 0.03 0.01 0.01 0.03	1.4 1.1 0.8 0.4 0.6	0,071 0.055 0.057 0.038 0.046
3371		14.4	960	3.7	4.3	<0.001	0.02	0.12	2.9	0.2	0.3	16.8	<0.01	0.01	0.8	0.051
3372		11.9	560	4.3	6.1	<0.001	0.02	0.11	2.8	0.3	0.3	19.6	<0.01	0.02	0.5	0.049
3373		11.8	430	14.5	7.1	<0.001	0.01	0.11	3.5	<0.2	0.4	17.7	<0.01	0.08	0.7	0.046
3374		17.6	720	3.8	5.9	<0.001	0.01	0.15	3.5	<0.2	0.4	22.8	<0.01	0.02	0.8	0.058
3375		13.8	1460	4.1	4.7	<0.001	0.01	0.12	2.9	0.4	0.4	16.6	<0.01	0.02	0.8	0.056
3376		14.3	1670	3.6	5.1	<0.001	<0.01	0.12	2.6	0.3	0.4	14.9	<0.01	0.02	1.0	0.057
3377		18.6	1250	3.1	5,8	<0,001	0.02	0,19	2.7	0,3	0.3	27.8	<0.01	0,03	0.7	0,064
3378		17.5	1320	3.4	3,7	<0,001	0.01	0,17	3.1	0,2	0.3	22.2	<0.01	0,03	0.7	0.060
3379		18.4	200	3.4	4,8	<0,001	0.01	0,16	5.7	0.3	0.3	27.8	<0.01	0,02	1.0	0.078
3380		12.7	1170	3.1	3,7	<0.001	<0.01	0.11	2.2	<0.2	0.3	15.4	<0.01	0.02	0.8	0.060
3381		15.0	1170	2.9	4.4	<0.001	<0.01	0.13	2.9	<0.2	0.3	16.1	<0.01	0.02	0.9	0.062
3382		20.3	1080	3.0	4.8	<0.001	<0.01	0.11	2.3	<0.2	0.3	17.8	<0.01	0.02	0.8	0.064
3383		12.6	1510	3.5	4.3	<0.001	<0.01	0.12	2.9	<0.2	0.4	15.9	<0.01	0.02	1.0	0.070
3384		9.9	780	3.5	6.6	<0.001	<0.01	0.13	2.5	<0.2	0.4	23.2	<0.01	0.03	0.7	0.054
3385		13.7	770	3.9	6.6	<0.001	<0.01	0.14	3.3	0.2	0.4	17.8	<0.01	0.03	1.2	0.080
3386		14,0	660	4,0	6.5	<0,001	<0.01	0,18	2,9	<0.2	0.4	23.6	<0.01	0.03	1.1	0,085
3387		11.0	790	3,2	4.3	<0.001	<0.01	0,21	3,3	<0.2	0.3	22.6	<0.01	0.03	1.0	0.079
3388		11.3	970	3,7	6.7	<0.001	<0.01	0,14	3,3	<0.2	0.4	17.7	<0.01	0.03	1.0	0.061
3389		11.2	900	3,6	6.4	<0.001	<0.01	0,13	2,5	<0.2	0.4	17.5	<0.01	0.03	0.8	0.057
3390		10,6	910	3,6	5,3	<0,001	<0.01	0,13	2,4	<0.2	0.3	17.4	<0.01	0.03	0.7	0,062
3391		10,2	860	3,4	6,1	<0,001	<0.01	0,13	2,9	<0,2	0.4	17.4	<0.01	0,02	0.9	0,068
3392		8,6	640	3,3	4,0	<0,001	<0.01	0,13	2,8	<0,2	0.3	20.7	<0.01	0,02	0.7	0,063
3393		10,0	410	3,3	4,8	0,001	0.02	0,11	2,4	0,5	0.4	42.6	<0.01	0,02	0.5	0,064
3394		17.0	1370	3,5	5,8	<0.001	<0.01	0,16	3,3	<0.2	0.4	21.6	<0.01	0.02	1.2	0.076
3395		13.7	200	3,8	7,0	<0.001	<0.01	0,13	3,1	<0.2	0.3	25.3	<0.01	0.01	0.9	0.088
3396		14.6	290	5.0	4.6	<0.001	<0.01	0.13	3.4	<0.2	0.5	26.7	<0.01	0.02	1.1	0.083
3397		17.7	1130	2,9	7,9	<0,001	<0.01	0,30	6.7	<0.2	0.3	41,6	<0.01	0.06	1.3	0,088
3398		12.1	320	4,4	5,3	<0,001	<0.01	0,16	3.0	0.2	0.4	26,8	<0.01	0.01	0.8	0,075
3399		15.5	1140	5.1	10,9	<0,001	<0.01	0,16	3.6	0.2	0.5	19,9	<0.01	0.03	1.1	0,080
3400		13.5	1120	4.5	8.1	<0.001	<0.01	0.26	3.2	<0.2	0.4	19.1	<0.01	0.04	1.1	0.072

CERTIFICATE OF ANALYSIS VA21223604

ALS Canada Ltd,
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 6 - D Total # Pages: 7 (A - D) Plus Appendlx Pages Finalized Date: 5-NOV-2021 Account: GOLARO

									CERTIFICATE OF AIGAETSIS VALITIES
	Method		AuME-TL43				AuME-TL43		
	Analyte	TI	U	V	w	Y	Zn	Zr	
Sample Description	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOD	0.02	0.05	1	0.05	0.05	2	0.5	
3361		0.15	0,46	64	<0.05	5.74	35	5.7	
3362		0.06	0.29	61	< 0.05	3.33	32	1.9	
3363		0.18	0.48	56	0.06	6.79	31	1.7	
3364		0,63	0,54	74	0,05	9,35	30	2,7	
3365		1,81	0.63	74	<0.05	10,95	56	5,1	
3366		2,14	0,92	76	<0.05	14,75	55	5,5	
3367		0.06	0.34	53	< 0.05	3.07	29	5.5	
3368		0.04	0.25	51	< 0.05	6.24	25	3.5	
3369		0.03	0.22	50	< 0.05	2.34	59	0.9	
3370		0.03	0.19	51	< 0.05	2.52	49	1.4	
3371		0.04	0.24	50	<0.05	2.03	47	2.0	
3372		0,03	0,17	48	<0.05	1,66	58	1,0	
3373		0.06	0.24	64	<0.05	3,55	53	2.9	
3374		0.04	0.29	61	< 0.05	2.44	44	1.7	
3375		0.03	0.30	43	<0.05	2.38	52	4.2	
3376		0.04	0.35	46	0.07	2.57	36	5.8	
3377		0,03	0,36	53	<0,05	3,26	33	1,6	
3378		0,03	0,30	71	0.16	3,57	39	2.0	
3379		0.05	0,49	63	< 0.05	14.85	35	2.3	
3380		0.03	0.26	52	0.10	2.10	32	4.6	
3381		0.03	0.29	61	0.10	2,90	32	4.2	
3382		0.03	0.30	47	0.08	2.72	27	4.0	
3383		0.03	0.35	51	0.10	2.96	31	5.6	
3384		0.03	0,28	56	0.09	2,21	36	3,1	
3385		0.05	0.39	60	0.13	3,12	44	7,5	
3386		0,05	0,29	71	0,14	2,28	38	7,8	
3387		0.04	0.30	77	0.10	2.98	39	2.7	
3388		0.05	0.32	64	0.11	2.91	45	3.4	
3389		0.04	0.27	55	0.10	2.26	39	2.8	
3390		0,04	0,25	55	0,12	2,22	30	1,9	
3391		0,04	0,30	61	0,08	2,60	33	2,9	
3392		0.03	0,33	56	0.13	2,85	22	3.7	
3393		0.03	0.29	39	0.09	5.48	25	3.0	
3394		0.03	0.33	54	0.10	2.86	39	4.1	
3395		0.04	0.45	50	0.15	3.88	33	4.3	
3396		0.05	1.00	44	0.06	5.39	34	4.8	
3397		0,07	0,48	93	0,23	9,53	42	2,5	
3398		0.04	0,57	51	0.07	5,75	30	3,1	
3399		0.06	0.37	60	0.10	3,31	52	4.4	
3400		0.05	0.37	61	0.10	3.60	49	5.4	

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: GOLDEN LAKE EXPLORATIONS LTD. **SUITE 2801** 1166 MELVILLE ST. VANCOUVER BC V6E 4P5

Page: 7 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(/ (C)									(CERTIFI	CATE O	F ANAL	YSIS	VA212	23604	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	AuME-TL43 Au ppm 0,001	AuME-TL43 Ag ppm 0,01	AuME-TL43 Al % 0,01	AuME-TL43 As ppm 0,1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0,01	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0,01	AuME-TL43 Ce ppm 0,02	AuME-TL43 Co ppm 0.1	AuME-TL43 Cr ppm 1	AuME-TL4 Cs ppm 0,05
3401 3402 3403 3404 3405		0,38 0.50 0.62 0,28 0,32	0.001 0.001 0.005 0,002 0.001	0.09 0.12 0.24 0.29 0.17	1.69 1.71 2.55 2.19 1.84	1.7 1.6 2.4 2.1 1.5	<10 <10 <10 <10 <10	120 190 300 300 230	0.39 0.40 0.54 0.54 0.41	0.11 0.11 0.14 0.12 0.11	0.31 0.42 0.69 0.87 0.85	0.06 0.06 0.10 0.09 0.12	11.50 11.25 23.5 16.90 13.00	8.4 8.5 11.4 6.2 6.0	21 27 36 19 17	1,06 0,97 1,33 0,78 0,66
3406 3407		0,62 0.36	0.002 0.002	0.16 0.17	2.51 2.07	2.3 2.5	<10 <10	260 220	0.58 0.41	0.13 0.11	0.57 0.69	0.09 0.09	21.6 14.05	8.4 8.4	27 27	0,93 0.91

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 7 - B
Total # Pages: 7 (A - D)
Plus Appendlx Pages
Finalized Date: 5-NOV-2021
Account: GOLARO

(703)									(CERTIFIC	CATE O	F ANAL	YSIS	VA2122	23604	
	Method Analyte Units LOD	AuME-TL43 Cu ppm 0.2	AuME-TL43 Fe % 0,01	AuME-TL43 Ga ppm 0,05	AuME-TL43 Ge ppm 0,05	AuME-TL43 Hf ppm 0,02	AuME-TL43 Hg ppm 0,01	AuME-TL43 In ppm 0,005	AuME-TL43 K % 0,01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0,1	AuME-TL43 Mg % 0,01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0,01	AuME-TL43 Nb ppm 0,05
3401		33.9	2.13	6.14	0.05	0.03	0.02	0.016	0.05	5.9	11.1	0.44	551	0,39	0.02	0.52
3402		41.4	2.22	5.43	0.05	0.04	0.02	0.014	0.07	7.9	16.0	0.46	260	0.31	0.03	0.64
3403		52.7	2.89	7.43	0.07	0.14	0.05	0.024	0.10	9.1	19.4	0.59	553	0.37	0.03	0.72
3404		59,2	2,10	6,08	0.07	0,14	0,06	0.020	0,07	11,3	21,5	0,32	252	0,22	0,03	1.05
3405		40.4	1,81	4,98	0,05	0.08	0.05	0.017	0.06	7.1	21,9	0.31	368	0,21	0.03	0.80
3406		74,4	2,57	6,99	0,08	0,12	0,03	0,021	0,09	12,9	19,7	0,46	445	0,24	0,03	0,62
3407		52.1	2.20	6.00	0.05	0.11	0.04	0.017	0.06	6.6	15.7	0.49	218	0.27	0.02	0.94

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 7 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 5-NOV-2021 Account: GOLARO

(ALS)	•								C	ERTIFI	CATE O	F ANAL	YSIS	VA2122	23604	
	Method Analyte Units LOD	AuME-TL43 Ni ppm 0,2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0,2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0,001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0,05	AuME-TL43 Sc ppm 0,1	AuME-TL43 Se ppm 0,2	AuME-TL43 Sn ppm 0,2	AuME-TL43 Sr ppm 0,2	AuME-TL43 Ta ppm 0,01	AuME-TL43 Te ppm 0,01	AuME-TL43 Th ppm 0,2	AuME-TL43 Ti % 0,005
3401 3402 3403 3404 3405		14.0 18.4 23.5 17.0 11.6	730 350 310 420 330	4.7 3.9 4.8 4.6 4.7	7.0 8.9 13.2 4.7 5.4	<0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 0.01 0.01	0.15 0.16 0.20 0.15 0.14	2.9 4.0 6.9 4.0 2.9	<0.2 <0.2 0.4 0.5 0.4	0.4 0.4 0.5 0.4	24.5 27.6 34.3 34.0 31.1	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.01 0.03 0.03 0.02	0.6 0.8 1.7 0.7 0.7	0.070 0.087 0.100 0.065 0.064
3406 3407		20.2	330 370	4,8 4.2	9.1 5.0	<0.001 <0.001	<0.01 <0.01	0.14 0.15	5.5 3.8	0,2	0.5 0.4	28.0 32.1	<0.01 <0.01	0.02 0.02	1,4	0.093 0.084

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: 7 - D Total # Pages: 7 (A - D) Plus Appendlx Pages Finalized Date: 5-NOV-2021 Account: GOLARO

	,											
(ALS	_								CERTIFICAT	E OF ANALYSIS	VA21223604	
ample Description	Method Analyte Units LOD	AuME-TL43 Tl ppm 0,02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0,05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5				
401 402 403 404 405		0.04 0.05 0.08 0.05 0.05	0.30 0.42 0.81 1.00 0.74	56 56 65 43 41	0.09 0.07 0.11 0.09 0.08	4.67 8.27 10.25 11.65 6.60	49 38 37 27 28	1.3 1.5 5.5 5.3 3.0				
1406 1407		0.07 0.04	0.96 0.64	57 53	0.07	13.65 6.21	40 35	5.1 4.8				

To: GOLDEN LAKE EXPLORATIONS LTD.
SUITE 2801
1166 MELVILLE ST.
VANCOUVER BC V6E 4P5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5-NOV-2021 Account: GOLARO

CERTIFICATE	OF ANALYSIS	VA21223604

			CERTIFICATE OF AIVACIONS	TALILLIOOT				
		CERTIFICATE COMMENTS						
		LABORATORY A	ADDRESSES					
A college as Marked	Processed at ALS Vancouver located a	at 2103 Dollarton Hwy, North Vanco	uver, BC, Canada.					
Applies to Method:	AuME-TL43	LOG-22	SCR-41	WEI-21				

COPPERVIEW NORTH PROPERTY, MERRITT BC, 2021 Assessment Report APPENDICES - REVISED

APPENDIX D

North and South Block MobileMT Project in British Columbia for

Golden Lake Exploration Inc., - Data Acquisition and Processing

Report - Helicopter-borne MobileMT Electromagnetic

Magnetic survey

Expert Geophysics' Job #21039 August, 2021

FILED SEPARATELY

NOTE: These results are in the public domain.

47

Data Acquisition and Processing Report Helicopter-borne MobileMT Electromagnetic & Magnetic survey

in British Columbia for Golden Lake Exploration Inc., by Expert Geophysics Limited. Address:

1225 Gorham St. Newmarket, Ontario, L3Y 8Y4

Tel: (+1)-647-402-8437 (EGL) info@expertgeophysics.com www.expertgeophysics.com

'Expert Geophysics' Job #21039

August, 2021

Contents

1 Executive Summary	3
2 Introduction	4
3 Survey Areas and Flight Specifications	6
3.1 North Block	6
3.1 South Block	8
4 Field Operations	10
4.1 Operations schedule	10
4.2 Aircraft parking and base station locations	10
4.3 Re-flights	11
4.4 Office and Field Personnel	11
5 Survey Equipment and Specifications	12
5.1 Equipment composition	
5.2 The Airborne Magnetometer System	14
5.3 The Airborne GPS Navigation System	14
5.4 Data Acquisition System	15
5.5 Radar-Altimeter	15
5.6 MobileMT ground base station	16
5.7 MobileMT Magnetometer base station	16
5.8 Field Computer Workstation	
6 Data Processing and Deliverables Specifications	18
6.1 EM Data Processing	
6.2 EM data inversions	18
6.3 Magnetic Data Processing	19
6.4 VLF Data Processing	20
6.5 Ancillary data processing	20
6.6 Data Deliverables	21
7 Survey results general analysis and recommendations	25
Appendix I Company Profile	
Appendix II MobileMT electromagnetic technology	
Appendix III MobileMT maps images	40

Tables	
Table 1 – Summary Project Information	5
Table 2 – Coordinates of the survey North block (WGS84, UTM zone 10N)	7
Table 3 – Flight lines specifications for North Block	
Table 4 – Coordinates of the survey South block (WGS84, UTM zone 10N)	9
Table 5 – Flight lines specifications for South Block	9
Table 6 – Operations schedule	10
Table 7 – Aircraft parking and base station locations	
Table 8 – List of re-flown lines for North and South Block	11
Table 9 – Frequency gates extracted from the data (Hz) for the North Block	13
Table 10 – Frequency gates extracted from the data (Hz) for the South Block	13
Table 11 – Geosoft 21039_North_Block_EM.gdb Data Format	21
Table 12 – Geosoft 21039_South_Block_EM.gdb Data Format	
Table 13 – Geosoft 21039_North_Block_Mag.gdb and 21039_South_Block_Mag.gdb Data	base Format
Table 14 – Geosoft 21039_North_Block_VLF.gdb and 21039_South_Block_VLF.gdb Databa	
Table 15 – Lists of North Block grids (in Geosoft format) and maps (in Geosoft and PDF for	•
Table 16 – Lists of South Block grids (in Geosoft format) and maps (in Geosoft and PDF for	mats) 24
Figures Figure 1 - Survey Area Location - Block names from porth to south: North Block, and South	n Dlock - 6
Figure 1 – Survey Area Location. Block names from north to south: North Block, and South Figure 2 – North block flight path	
Figure 3 – South block flight path	
Figure 5 — ECL Navigation Computer Moving man Display	
Figure 5 – EGL Navigation Computer, Moving-map Display	
Figure 6 – Pilot Steering Indicator and Radio Altimeter Indicator	
Figure 8 – Regional geology surrounding survey area	
Figure 9 – 3D view of resistivity distribution for North Block.	
Figure 10 – North Block. Contours of conductive zones and resistive zones over color grid	
field.	_
Figure 11 – Resistivity sections alone survey lines from north, central and south parts of the	
Block.	
Figure 12 – 3D view of resistivity distribution for South Block. Top from surface, bottom fr	
ASL	om 500 m
Figure 13 - South Block. Contours of conductive zones and resistive zones over color grid of field.	31 of magnetic

1 Executive Summary

Expert Geophysics Limited (EGL) conducted a helicopter-borne **MobileMT** electromagnetic and magnetic survey in the Thompson-Nicola Regional District of British Columbia over two blocks for **Golden Lake Exploration Inc**. Electromagnetic and magnetic geophysical data were acquired using EGL's airborne **MobileMT** system. Please refer to Appendix I for the Company Profile and Appendix II for a description of the **MobileMT** technology.

The purpose of the survey was mapping bedrock structure and lithology, including possible alteration and mineralization zones, observing apparent conductivity corresponding to different frequencies, inverting EM data to obtain the distribution of resistivity with depth, and using VLF EM and magnetic data to study properties of the bedrock units. A total of 9 production flights were flown to complete 1072 line-kilometers of the survey over two blocks; North Block with 770 line-kilometers of the survey over a 155 sq.km area; South Block with 302 line-kilometers of the survey over a 115 sq.km area.

The survey was flown using a Eurocopter AS 350 B2 helicopter, registration C-GMHP, of the aviation company Mustang Helicopters. The survey production flights started on June 12, 2021 and data acquisition was completed on June 18, 2021. The survey operations were conducted from AP Ranch Guest Ranch in the Thompson-Nicola Regional District of British Columbia.

The survey lines for both blocks are oriented N-S (90°N) at 200 m spacing, while tie lines are oriented in perpendicular direction to the survey lines and spaced at 2000 m.

The geophysical survey results are presented in the form of digital databases, maps, grids, sections, elevation slices and 3D voxels. The report describes the data acquisition, processing and inversion procedures, equipment and digital data specifications, basic data analysis.

2 Introduction

The report describes the **MobileMT** airborne electromagnetic and magnetic survey that **Expert Geophysics Limited** (**EGL**, Appendix I) performed for **Golden Lake Exploration Inc.** during the period from June 12, 2021 – June 18, 2021, over two blocks located approximately 30 km north of Princeton, British Columbia. Electromagnetic passive fields and magnetic field data were gathered using **MobileMT** helicopter-borne system (Appendix II).

The <u>Survey Area</u> section of the report contains a description of the survey area and flight paths. The <u>Field Operations</u> section includes information about the operation flow, the airport and base station locations and flights dates. The <u>Survey Equipment</u> section describes the main and ancillary equipment used for data acquisition. The <u>Data Processing and Deliverables Specifications</u> section consists of main data processing and inversion procedures and final products description. The <u>Survey results discussion</u> section includes basic data analysis and recommendations for further data analysis.

The following table includes a brief reference of the survey specifications (Table 1).

Table 1 – Summary Project Information

Client:	Golden Lake Exploration Inc.
Consultant's contact:	Martin St-Pierre, P. Geoph ST PIERRE GEOCONSULTANT Inc. Tel: 604-464-7003 Cel: 604-512-4712
EGL Job Number	#21039
Survey area location:	Thompson-Nicola Regional District of British Columbia
Crew and aircraft location:	AP Guest Ranch, 4220 Princeton-Kamloops Hwy #1148, Thompson-Nicola N, BC V1K 1B8
Mag Base station location:	Lat 49.75582 N / Long 120.65148 W
EM Ref station location:	Lat 49.79625 N / Long 120.37714 W
Block:	North
Total line kms:	770 line-km
Total Survey Area:	155 sq.km
Traverse line direction/spacing:	90°; 200 m
Tie lines direction/spacing:	0°; 2000 m
Dates flown:	06/12/2021 – 06/18/2021
Block:	South
Total line kms:	302 line-km
Total Survey Area:	115 sq.km
Traverse line direction/spacing:	90°; 200 m
Tie lines direction/spacing:	0°; 2000 m
Dates flown:	06/12/2021 – 06/18/2021
Helicopter:	Eurocopter AS 350 B2, C-GMHP, Mustang Helicopters
Average survey speed:	14.0 m/sec
Average Helicopter terr.clearance:	167 m
Average magnetometer clearance:	87 m
Average EM sensor clearance:	67 m
Coordinates Datum:	WGS84
Coordinates Projection:	UTM, Zone 10N, Central Meridian 123° W
MobileMT extracted frequencies Hz:	26, 33, 42, 84, 101, 141, 163, 209, 268, 341, 419, 533, 842, 4274, 17099 (North Block) 33, 84, 101, 141, 163, 209, 268, 341, 419, 533, 677, 13571, 17099 (South Block)

3 Survey Areas and Flight Specifications

The **MobileMT** North and South Block survey areas are located approximately 30 km north of Princeton, British Columbia.

Figure 1 – Survey Area Location. Block names from north to south: North Block, and South Block.

The survey flown with a Eurocopter AS350 B2 helicopter, registration C-GMHP, operated by the aviation company Mustang Aviation.

- Average terrain clearance of the helicopter during the survey was 167 m, at average speed
 14 m/sec.
- Average terrain clearance of the magnetometer bird during the survey was 87 m,
- Average electromagnetic sensor terrain clearance 67 m.

3.1 North Block

The **MobileMT** North Block is located about 40 km north of Princeton, British Columbia and 40 km southeast of Merritt, British Columbia. Flight path over the survey block is presented in Figure 2.

Figure 2 - North block flight path

The "WGS84 / UTM zone 10N" coordinate system information is displayed in Table 2. The survey flight lines specifications are in Table 3.

Table 2 – Coordinates of the survey North block (WGS84, UTM zone 10N)

	North Block Boundary Coordinates						
Х	Υ	X	Υ				
683974.6	5516668	676139.5	5528428				
682974.6	5516671	677139.5	5528429				
681974.6	5516673	678139.4	5528426				
680974.6	5516675	679139.2	5528403				
679974.6	5516678	680138.9	5528381				
678974.6	5516680	681138.7	5528358				
677974.6	5516682	682138.4	5528336				
676974.6	5516685	683138.2	5528314				
675974.6	5516687	684125.8	5528242				
674974.6	5516693	685021.5	5527797				
673992.2	5516740	685917.2	5527353				
673623.4	5517619	686241.7	5526428				
673614.4	5518619	686441.8	5525455				
673605.5	5519619	686478.4	5524456				
673596.5	5520619	686497.1	5523456				
673587.6	5521619	686500.1	5522456				
673581.4	5522619	686503.2	5521456				
673576.9	5523619	686506.2	5520456				

673583.7	5524619	686509.2	5519456
673625.3	5525618	686512.2	5518456
673667.7	5526617	686451.2	5517459
673714.7	5527616	685818.3	5516780
674139.5	5528426	684820.1	5516719
675139.5	5528427		

Table 3 – Flight lines specifications for North Block

Line spacing, m	Lines direction	Line numbers	# of lines	Line kms
200 m (traverse)	90°	1000-2100	56	689
2000 (tie)	0°	4120-4240	7	81
Total			63	770

3.1 South Block

The **MobileMT** South Block is located about 25 km northwest of Princeton, British Columbia. Flight path over the survey block is presented in Figure 3.

Figure 3 – South block flight path

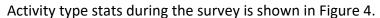
The "WGS84 / UTM zone 10N" coordinate system information is displayed in Table 4. The survey flight lines specifications are in Table 5.

Table 4 – Coordinates of the survey South block (WGS84, UTM zone 10N)

South Block Boundary Coordinates						
X	Υ	X	Υ			
688793.5	5501195	688637	5511879			
687793.5	5501186	689636.5	5511913			
686793.6	5501178	690635.9	5511947			
685794.8	5501227	691632.3	5511873			
684796.1	5501277	692628.3	5511784			
684341.9	5502159	693118.7	5510961			
683897.1	5503054	693556.4	5510062			
683452.3	5503950	693994.1	5509163			
683327.3	5504923	694059	5508177			
683335	5505923	694065.6	5507177			
683364.7	5506922	694029.3	5506180			
683394.3	5507922	693809.8	5505206			
683461.3	5508919	693530.2	5504246			
683853.3	5509833	693250.6	5503286			
684279.9	5510738	692971	5502326			
684706.4	5511642	692591	5501489			
685638.7	5511778	691594	5501412			
686638.2	5511812	690597	5501334			
687637.6	5511846	689600	5501257			

Table 5 – Flight lines specifications for South Block

Line spacing, m	Lines direction	Line numbers	# of lines	Line kms
200 m (traverse)	90°	5000-5500	26	250
2000 (tie)	0°	7000-7080	5	52
Total			31	302


4 Field Operations

4.1 Operations schedule

The survey operations were conducted from AP Ranch Guest House in the Thompson-Nicola Regional District of British Columbia. The survey was executed in 9 production flights started on June 12, 2021 and data acquisition was completed on June 18, 2021.

Table 6 - Operations schedule

Date	estim. flown, km	Operation
12-Jun-21	118.0	Base station was installed and tested in the field. One production flight completed (f01).
13-Jun-21	12.0	F02 aborted after first line due to incoming rain over survey area.
14-Jun-21	0.0	No production due to poor weather conditions.
15-Jun-21	252.0	Two production flights (f03, f04).
16-Jun-21	288.0	Two production flights (f05, f06).
17-Jun-21	260.0	Two production flights (f07, f08).
18-Jun-21	120.0	One production flight to complete planned lines (f09).

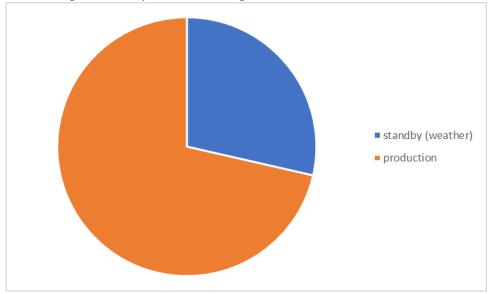


Figure 4 – Activity during the survey

4.2 Aircraft parking and base station locations

Locations of the aircraft parking, magnetic base station and MobileMT reference base station are specified in Table 7.

Table 7 – Aircraft parking and base station locations

	Position	
Aircraft parking	AP Ranch Guest House, Thompson-Nicola Regional District, British Columbia	
Mag base station	Lat 49.75582 N / Long 120.65148 W	
EM Ref station	Lat 49.79625 N / Long 120.37714 W	

4.3 Re-flights

Identified, during the survey quality control (QC), and re-flown flight-lines for the North and South Block are specified in Table 8. Only accepted by QC lines data are included into the final databases.

Table 8 – List of re-flown lines for North and South Block

Line Number	Length, km	Reason
1000	10	Inclement meteorological conditions

4.4 Office and Field Personnel

The following personnel participated in the project support and field operations:

Project Managers: Andrei Bagrianski (EGL);

EGL Operators: Oleg Babisin, Carlos Rengifo;

EGL Technician: Igor Filonenko

DataQC, Processor: Andrei Bagrianski (EGL);

Tech.support: Igor Filonenko;

Final data processing, finals producing, report: Alexander Prikhodko (EGL), Julian Boada (EGL), Aamna

Sirohey (EGL).

5 Survey Equipment and Specifications

5.1 Equipment composition

The main instrumentation installed on the **MobileMT** tow-bird:

- Three orthogonal induction coils (1.4 m diameter each) to measure naturally occurring magnetic fields in the frequency range 25 Hz – 20,000 Hz
- Geometrics G822A Cesium Magnetometer, installed in a separate towed-bird, 20 m above the
 MobileMT bird, sensitivity of 0.001 nT/10 Hz sampling
- GPS antenna, installed on the towed-bird with the magnetometer.

The main instrumentation installed on the helicopter:

- EGL PC-104 based Data Acquisition System
- EGL Navigation system with Pilot Steering Indicator
- Smartmicro model UMRR-0A Radio Altimeter, 0 500 m range
- GPS antenna, installed on the helicopter tail

Base Stations and Ground Support instrumentation comprises:

- MobileMT Ground Base Station, 4-channel (2 channels for signal and 2 channels for reference signal), to measure variations of the electric field in two directions with 4 pairs of electrodes.
 Electrical line length 100 m each line, direction X 86 degrees, Y 176 degrees.
- GEM Systems GSM-19 Base Station Magnetometer, 0.1 nT sensitivity, with data logger;
- A Field Data Processing Workstation and a full suite of software for the quality control and preliminary processing of the airborne geophysical data.

MobileMT VLF specifications:

- VLF-EM System: EGL proprietary digital system
- Model: Matrix Plus
- Manufacturer: EGL
- Antenna: used in the MobileMT three orthogonal coils (x,y,z)
- Primary Sources: up to 4 discrete frequencies (stations)
- Output Parameters: Amplitude (secondary field), vertical and planar ellipicities, azimuth, tilt angle
- Sample Rate: 0.1 second
- Gain: Constant gain setting

Filtering: No filtering

MobileMT EM specifications:

• Airborne receiver: Three orthogonal induction coils (1.4 m diameter each)

• Airborne shell: Aerodynamic shaped capsule

• Digitizing rate: 73,728 Hz

• Tow cable length: 97 m

• Ground sensors 4 pairs of electrodes

• Electrode separation 100 m

Lines EM base station directions 86°, 176°

• Frequency range: 25 Hz – 20,000 Hz

• Output computed parameters: Apparent conductivity for selected frequencies

• Output frequencies: Selectable from 25 Hz – 20,000 Hz depending on signal strength.

Selected frequencies and corresponded frequency gates are in Table 9

Table 9 – Frequency gates extracted from the data (Hz) for the North Block.

Start	End	Center
22.8	30.4	26.3
28.7	38.4	33
36.1	48.3	42
72.3	96.6	84
91	121.8	101.1
114.7	153.4	141
144.5	193.3	162.5
182.1	243.5	209.4
229.4	306.8	267.6
289	386.6	341.1
364.1	487.1	419
458.8	613.7	532.5
728.3	974.1	841.7
3670.3	4909.3	4274.1
14681.2	19637.1	17099

Table 10 – Frequency gates extracted from the data (Hz) for the South Block.

Start	End	Center
28.7	38.4	33
72.3	96.6	84
91	121.8	101.1

114.7	153.4	141
144.5	193.3	162.5
182.1	243.5	209.4
229.4	306.8	267.6
289	386.6	341.1
364.1	487.1	419
458.8	613.7	532.5
578	773.2	677.1
7340.6	9818.5	8549.6
11652.5	15585.9	13571.1
14681.2	19637.1	17099

5.2 The Airborne Magnetometer System

The airborne magnetometer is a state-of-the-art system developed by EGL. It utilizes a Geometrics G822A cesium magnetometer sensor, installed in the towed-bird and the high accuracy Larmor frequency counter developed.

5.3 The Airborne GPS Navigation System

EGL uses a proprietary GPS navigation system utilizing the GPS Receiver with Linx RXM-GNSS-TM GPS Engines. The key features of the GPS Receiver are:

- L1 1575.42MHz, C/A code
- 33-channel satellite tracking
- Position accuracy: 2.5m
- 10 Hz update rate
- Constellation System Support:
 - GPS
 - GLONASS
 - GALILEO
 - QZSS
- DGPS support:
 - (SBAS) Satellite-Based Augmentation System
 - (RTCM) Radio Technical Commission for Maritime Services
 - (WAAS) Wide-Area Augmentation System
 - (EGNOS) European Geo-Stationary Navigation System

- (MSAS) MTSAT Satellite-Based Augmentation System
- (GAGAN) GPS-Aided Geo-Augmented Navigation

An EGL Computer/Pilot Steering Indicator is used to compute the flight path grids in real-time onboard the helicopter (Figure 5, Figure 6).

Figure 6 – Pilot Steering Indicator and Radio Altimeter Indicator

Figure 5 – EGL Navigation Computer, Moving-map Display

5.4 Data Acquisition System

The data acquisition system features an EGL PC-104-based data acquisition system. The EGL data acquisition system is an instrument developed by EGL for airborne geophysical data acquisition tasks. It features EGL proprietary technology and software. The EGL data acquisition system simultaneously records data on internal flash disk and displays it on a color LCD display, at a repetition rate of 0.33 sec, for post-flight computer processing. The five main functions fulfilled by the data acquisition system are: 1) system control and monitoring, 2) data acquisition, 3) real-time data processing, 4) navigation, and 5) data playback and analysis.

5.5 Radar-Altimeter

A Smartmicro model UMRR-0A radar altimeter system records the ground clearance to an accuracy of 3% over a range of 0 ft to 1,640 ft (0 to 500 m). The altimeter is interfaced to the navigation system and the data acquisition system with an output repetition rate of 10 Hz and digitally recorded.

5.6 MobileMT ground base station

The MMT Ground Base Station comprises:

- 4 pairs of electrodes, 100 m separation each;
- Lines directions 86°, 176°
- EGL PC-104 based Data Acquisition System with a GPS system to record the GPS time together with the electric data;
- A power supply unit.

5.7 MobileMT Magnetometer base station

The Magnetometer Base Station was a GSM-19 Overhauser magnetometer. The base-station magnetometer, with digital recording, operated continuously throughout the airborne data acquisition, with a sampling interval of 1 seconds, and sensitivity of 0.1 nT. The ground and airborne system clocks synchronized using GPS time, to an accuracy of far better than 1 second. At the end of the day's work, the digital data transferred from the base station's data-logger to the FWS.

This base station located in a place with low magnetic gradient (less than 2nT/m). The base station sited away from moving steel objects, vehicles or hydro transmission lines to ensure minimum interference and noise levels.

5.8 Field Computer Workstation

The Field Data Processing Workstation (FWS) is a dedicated computer system for use at the technical base in the field. The workstation to be used on this project is designed for use with Geosoft OASIS Data Processing Software. It is also capable of processing and imaging all the geophysical and navigation data acquired during the survey, producing semi-final, preliminary-levelled maps.

The main features of the FWS are:

- Portability;
- Digital Data Verification flight data quality and completeness were assured by both statistical and graphical means;
- Flight Path Plots flight path plots quickly generated from the GPS satellite data to verify the completeness and accuracy of a day's flying;
- Versatility the FWS used in both the field and the office. Data pre-processed in the field uploaded to the computers at the Data Processing Centre to speed up data turnaround;

- Preliminary Maps the FWS software permitted creation preliminary maps of the electromagnetic and magnetic data during the survey;
- Quality Control acquired data quickly and efficiently checked for quality in the field on daily basis.

6 Data Processing and Deliverables Specifications

6.1 EM Data Processing

The data recorded by the towed bird sensors (three mutually orthogonal dB/dt components of the EM field) is first merged with the recorded two mutually orthogonal electrical components of electric field on the stationary base station into one file. The program which is proprietary of EGL applied the FFT to the records of the merged file and calculates the matrices of the relation between the magnetic and electrical field signals on the different time bases and in the different frequency bands. The module of the determinant of each matrix is a rotation invariant parameter and it is used as an output parameter.

The frequencies for the data processing selected based on the signal strength for each surveyed block and the local noise interference. The selected frequencies for the survey presented in the Table 9.

6.2 EM data inversions

MobileMT data was inverted with nonlinear least-squares iterative inversion developed by N. Golubev for MobileMT. The inversion algorithm is based on the conjugate gradient method with the adaptive regularization (*Zhdanov M.S., Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, 36. Elsevier, 2002. 609 p.*). The inversion procedure is executed for each station independently without stations sampling along a line. The algorithm uses weighting of the inverted parameters. Consequently, sensitivity of the data to resistivity of each layer is approximately equal and independent of the layer's depth. This way provides high resolution of deep parts of a model, as upper part. Each measured data station along lines is inverted.

The data inversion procedures include:

- Data preparation and its conversion for the software input;
- Creation an inversion parameter file and a starting model. The model consisted of 100
 "layers", 30 m thickness with uniform resistivity. The starting resistivity is calculated as an
 average value for each station apparent resistivity curve;
- Inversions;
- Results control and analysis (RMS, data and model comparison);

- The inverted data import into Geosoft for database, sections, depth slices and a 3D voxel compilation.

Misfit of inversions (RMS) is calculated as:

RMS(
$$\rho$$
)= $\sqrt{\frac{\sum_{n=1}^{N}(\rho_n^{pr}-\rho_n^{obs})^2}{N}}$

Where obs – observed, pr – predicted resistivity. The misfit values are in the inversion database followed the report.

All electromagnetic data (apparent conductivity for different frequencies) where inverted into resistivity-depth distribution. The resulted products of the inversions include 3D voxels, resistivity-elevation slices, resistivity sections for each surveyed line.

6.3 Magnetic Data Processing

Raw total magnetic field data are recorded at 0.1-second sampling intervals.

The Earth's magnetic field is known to vary as a function of time. Time varying magnetic events such as magnetic storm transients and more regular diurnal variations which occur during the acquisition of magnetic data may affect the accuracy of the survey data and distort magnetic anomalies. Separation of the time-dependent variations in the magnetic field from a real geomagnetic anomaly requires an independent estimate of the transient magnetic field events. Base station magnetometer data provides this independent estimate. The diurnal base station data was analyzed for spikes and spurious sections which were manually removed from the dataset. A 15-point low pass filter was then applied to the diurnal data.

The magnetic data was corrected for diurnal variations, leveled and filtered. Raw magnetic data has initial preprocessing only (spike removal, short gaps interpolated). At the next stage, all the magnetic data is processed by an adjustment procedure that statistically treats the line data. It is designed to recognize and remove systematic bias and small random errors in the data which can cause survey line mis-ties. Bias errors in the magnetic data arise from changes in the level of the total magnetic field.

To remove bias errors, each profile of a given data set in the survey was shifted up or down systematically by an amount such that the sum of the square of the mis-tie errors for that data set over the entire survey network is minimized. The systematic corrections are further constrained such that

the sum of the systematic corrections is zero, effectively eliminating DC shifts to the network as a whole. After this systematic adjustment, the remaining intersection mis-ties were studied and removed. The final statistical choice of the data values at each intersection is a function of the reliability weights of each line for each data set. The random error correction for each data set prorated between intersections. After editing the adjusted line data for line pulls and data quality, they were input to a minimum curvature gridding algorithm and a grid produced.

As an additional product, the calculated vertical derivative (cvg) was produced.

6.4 VLF Data Processing

VLF-EM data were captured using the MobileMT three components receiver. The instrument is capable of simultaneously monitoring up to four VLF frequencies, recording amplitude (secondary field), transmitter station azimuth (relative to aircraft orientation), vertical and planar ellipticities and tilt angle.

For this project, the following VLF transmitters were monitored:

- Station NAA: Cutler, Maine 24.0 kHz
- Station NML: La Moure, North Dakota 25.2 kHz
- Station NLK: Jim Creek, Washington 24.8 kHz

But the 24 kHz signal was accepted and presented in the final database.

Processing of the raw amplitude data consisted of the following:

- Mask out any embedded "off-line" data
- Noise reduction filtering using non-linear Naudy filtering (5 pt filter width)
- Initial levelling (mean subtraction)
- Fine levelling (micro-levelling)

The finalized data for accepted frequency(s) were presented as a series of amplitude colour images. High amplitude values correspond to conductive zones.

6.5 Ancillary data processing

Positions and altitudes of the magnetic sensor and EM receiver are derived from data of two GPS antennas (A – on the helicopter, B- on the magnetic sensor bird) and radar-altimeter positioned on the helicopter. A digital terrain model (DTM) channel has been calculated by subtracting the filtered radar-altimeter data from the GPS-A elevation.

6.6 Data Deliverables

EM Database: North Block EM presented in a Geosoft GDB format

- The database channels description is in the Table 11.

Table 11 – Geosoft 21039_North_Block_EM.gdb Data Format

Channel Name	Units	Description	
xe:	metres	EM bird UTM Easting WGS84 Zone 10 North	
ye:	metres	EM bird UTM Northing WGS84 Zone 10 North	
ze:	meters	EM bird elevation above geoid	
gtime:	Sec of the day	GPS time	
RdAlt:	metres	helicopter terrain clearance from radar altimeter	
alt_e:	Metres	EM bird terrain clearance	
DTM:	metres	Digital Elevation Model	
PLM:	Units	Powerline monitor	
ac_26:	mS/m	Apparent Conductivity for freq 26.3 Hz	
ac_33:	mS/m	Apparent Conductivity for freq 33.0 Hz	
ac_42:	mS/m	Apparent Conductivity for freq 42.0 Hz	
ac_84:	mS/m	Apparent Conductivity for freq 84.0 Hz	
ac_101:	mS/m	Apparent Conductivity for freq 101.1 Hz	
ac_141:	mS/m	Apparent Conductivity for freq 141.0 Hz	
ac_163:	mS/m	Apparent Conductivity for freq 162.5 Hz	
ac_209:	mS/m	Apparent Conductivity for freq 209.4 Hz	
ac_268:	mS/m	Apparent Conductivity for freq 267.6 Hz	
ac_341:	mS/m	Apparent Conductivity for freq 341.1 Hz	
ac_419:	mS/m	Apparent Conductivity for freq 419.0 Hz	
ac_533:	mS/m	Apparent Conductivity for freq 532.5 Hz	
ac_842:	mS/m	Apparent Conductivity for freq 841.7 Hz	
ac_4274:	mS/m	Apparent Conductivity for freq 4274.1 Hz	
ac_17099:	mS/m	Apparent Conductivity for freq 17099.0 Hz	

Table 12 – Geosoft 21039_South_Block_EM.gdb Data Format

Channel Name	Units	Description	
xe:	metres	EM bird UTM Easting WGS84 Zone 10 North	
ye:	metres	EM bird UTM Northing WGS84 Zone 10 North	
ze:	meters	EM bird elevation above geoid	
gtime:	Sec of the day	GPS time	
RdAlt:	metres	helicopter terrain clearance from radar altimeter	
alt_e:	Metres	EM bird terrain clearance	
DTM:	metres	Digital Elevation Model	
PLM:	Units	Powerline monitor	
ac_33:	mS/m	Apparent Conductivity for freq 33.0 Hz	
ac_84:	mS/m	Apparent Conductivity for freq 84.0 Hz	
ac_101:	mS/m	Apparent Conductivity for freq 101.1 Hz	
ac_141:	mS/m	Apparent Conductivity for freq 141.0 Hz	
ac_163:	mS/m	Apparent Conductivity for freq 162.5 Hz	
ac_209:	mS/m	Apparent Conductivity for freq 209.4 Hz	
ac_268:	mS/m	Apparent Conductivity for freq 267.6 Hz	

ac_341:	mS/m	Apparent Conductivity for freq 341.1 Hz
ac_419:	mS/m	Apparent Conductivity for freq 419.0 Hz
ac_533:	mS/m	Apparent Conductivity for freq 532.5 Hz
ac_677:	mS/m	Apparent Conductivity for freq 677.1 Hz
ac_8550:	mS/m	Apparent Conductivity for freq 8549.6 Hz
ac_13571:	mS/m	Apparent Conductivity for freq 13571.1 Hz
ac_17099:	mS/m	Apparent Conductivity for freq 17099.0 Hz

The EM and MAG databases can be synchronized based on gtime channel.

Mag Database: North and South Block Mag presented in a Geosoft GDB format

- The database channels description is in the Table 13.

Table 13 - Geosoft 21039_North_Block_Mag.gdb and 21039_South_Block_Mag.gdb Database Format

Channel Name	Units	Description	
xm:	metres	mag bird UTM Easting WGS84 Zone 10 North	
ym:	metres	mag bird UTM Northing WGS84 Zone 10 North	
zm:	meters	mag bird elevation above geoid	
xh:	metres	heli UTM Easting WGS84 Zone 10 North	
yh:	metres	heli UTM Northing WGS84 Zone 10 North	
zh:	meters	heli elevation above geoid	
gtime:	Sec of the day	GPS time	
RdAlt:	metres	helicopter terrain clearance from radar altimeter	
alt_m:	Metres	mag bird terrain clearance	
DTM:	metres	Digital Elevation Model	
GPS_B_LAT:	Decimal degrees	Mag bird latitude, WGS84	
GPS_B-LON:	Decimal degrees	Mag bird longitude, WGS84	
basemag:	nT	Magnetic base station data	
Magair:	nT	Measured magnetic field	
Magcorr:	nT	Corrected for diurnal magnetic field	
TMI:	nT	Total magnetic intensity, levelled and microlevelled	
TMI_CVG:	nT/m	Calculated vertical derivative of the magnetic field	

The EM and MAG databases can be synchronized based on gtime channel.

VLF Database: North and South Block VLF presented in a Geosoft GDB format

- The database channels description is in Table 14.

Table 14 – Geosoft 21039_North_Block_VLF.gdb and 21039_South_Block_VLF.gdb Database Format

Channel Name	Units	Description	
xe:	metres	EM bird UTM Easting WGS84 Zone 10 North	
ye:	metres	EM bird UTM Northing WGS84 Zone 10 North	
ze:	meters	EM bird elevation above geoid	
gtime:	Sec of the day	GPS time	
RdAlt:	metres	helicopter terrain clearance from radar altimeter	
alt_e:	Metres	EM bird terrain clearance	
DTM:	metres	Digital Elevation Model	

Amplitude:		VLF secondary field amplitude for freq 24.0 kHz	
Azimuth:	degrees	transmitter station azimuth (relative to aircraft orientation)	
TiltAngle:		In-Phase [VLF Tilt]	
El_Vert:		Quadrature [VLF Vertical Ellipticity]	
El_Plan:		VLF Planar Ellipticity	

Grids and Maps:

- Refer to Table 15 for summary of grids and maps (Appendix III) which accompany this report.

Table 15 – Lists of North Block grids (in Geosoft format) and maps (in Geosoft and PDF formats).

Grids	Maps	Description	
DTM	21039_North_Block_DTM	Digital Terrain Model	
TMI CVG	21039_North_Block_TMI_CVG Calculated vertical derivative of the		
TMI	21039_North_Block_TMI	Total magnetic intensity	
PLM	21039_North_Block_plm	Powerline monitor	
ac_26:	21039_North_Block_ac_26	Apparent Conductivity for freq 26.3 Hz	
ac_33:	21039_North_Block_ac_33	Apparent Conductivity for freq 33.0 Hz	
ac_42:	21039_North_Block_ac_42	Apparent Conductivity for freq 42.0 Hz	
ac_84:	21039_North_Block_ac_84	Apparent Conductivity for freq 84.0 Hz	
ac_101:	21039_North_Block_ac_101	Apparent Conductivity for freq 101.1 Hz	
ac_141:	21039_North_Block_ac_141	Apparent Conductivity for freq 141.0 Hz	
ac_163:	21039_North_Block_ac_163	Apparent Conductivity for freq 162.5 Hz	
ac_209:	21039_North_Block_ac_209	Apparent Conductivity for freq 209.4 Hz	
ac_268:	21039_North_Block_ac_268	Apparent Conductivity for freq 267.6 Hz	
ac_341:	21039_North_Block_ac_341	Apparent Conductivity for freq 341.1 Hz	
ac_419:	21039_North_Block_ac_419	Apparent Conductivity for freq 419.0 Hz	
ac_533:	21039_North_Block_ac_533	Apparent Conductivity for freq 532.5 Hz	
ac_842:	21039_North_Block_ac_842	Apparent Conductivity for freq 841.7 Hz	
ac_4274:	21039_North_Block_ac_4274	Apparent Conductivity for freq 4274.1 Hz	
ac_17099:	21039_North_Block_ac_17099	Apparent Conductivity for freq 17099.0 Hz	
DepthSliceASL	21039_North_Block_ResElev_XXXX	Resistivity Depth Slice from 0-1000 with 200m interval	
ResSec	ResSec_LXXXX	Resistivity Line Sections with full depth range	

Table 16 – Lists of South Block grids (in Geosoft format) and maps (in Geosoft and PDF formats).

Grids	Maps	Description	
DTM	21039_South_Block_DTM	Digital Terrain Model	
TMI CVG	21039_South_Block_TMI_CVG	Calculated vertical derivative of the magnetic field	
TMI	21039_South_Block_TMI	Total magnetic intensity	
PLM	21039_South_Block_plm	Powerline monitor	
ac_33:	21039_South_Block_ac_26	Apparent Conductivity for freq 33.0 Hz	
ac_84:	21039_South_Block_ac_33	Apparent Conductivity for freq 84.0 Hz	
ac_101:	21039_South_Block_ac_42	Apparent Conductivity for freq 101.1 Hz	
ac_141:	21039_South_Block_ac_84	Apparent Conductivity for freq 141.0 Hz	
ac_163:	21039_South_Block_ac_101	Apparent Conductivity for freq 162.5 Hz	
ac_209:	21039_South_Block_ac_141	Apparent Conductivity for freq 209.4 Hz	
ac_268:	21039_South_Block_ac_163	Apparent Conductivity for freq 267.6 Hz	
ac_341:	21039_South_Block_ac_209	Apparent Conductivity for freq 341.1 Hz	
ac_419:	21039_South_Block_ac_268	Apparent Conductivity for freq 419.0 Hz	
ac_533:	21039_South_Block_ac_341	Apparent Conductivity for freq 532.5 Hz	
ac_677:	21039_South_Block_ac_419	Apparent Conductivity for freq 677.1 Hz	
ac_8550:	21039_South_Block_ac_533	Apparent Conductivity for freq 8549.6 Hz	
ac_13571:	21039_South_Block_ac_842	Apparent Conductivity for freq 13571.1 Hz	
ac_17099:	21039_South_Block_ac_4274	Apparent Conductivity for freq 17099.0 Hz	
DepthSliceASL	21039_South_Block_ResElev_XXXX	Resistivity Depth Slice from -100-1200 m with nominal 200 m interval	
ResSec	ResSec_LXXXX	Resistivity Line Sections with full depth range	

Voxels:

- ResInv_ResN-topo_win.geosoft_voxel
- ResInv_ResS-topo_win.geosoft_voxel

7 Survey results general analysis and recommendations

A MobileMT airborne survey, including broadband natural electromagnetic fields, the earth's magnetic field, and EM VLF data measurements with precise positioning, has been successfully completed across the North and South Blocks. For the North Block, electromagnetic and magnetic data were collected along: 56 E-W survey lines nominally spaced at 200 m, and 7 N-S tie lines nominally spaced at 2000 m. For the South Block, electromagnetic and magnetic data were collected along: 26 E-W survey lines nominally spaced at 2000 m, and 5 tie lines nominally spaced at 2000 m. Electromagnetic readings were taken using an EGL AFMAG&VLF MobileMT system consisting of an airborne three-component magnetic sensor, as well as a base station with two horizontal electric components. A caesium magnetometer in a separate towed-bird has been used for collecting measurements of the intensity of the earth's magnetic field.

The purpose of the survey was mapping bedrock structures and lithology, including possible alteration and mineralization zones reflected in electric and magnetic properties of rocks. The airborne geophysical survey results are presented in apparent conductivity corresponding to different frequencies, resistivity-depth profiles determined from inverting EM data, available VLF EM data, as well as magnetic field data and its derivatives. The report is followed by digital databases, separate for each method, processed and calculated data grids, maps, and resistivity-depth products – elevation slices, sections and a 3D voxel representation. The standard EM data inversion was based on a 1D model.

The electrical properties of the rock assemblages in the survey areas are reflected in the distribution of apparent conductivity related to different frequencies and in the inverted resistivity-depth distributions. The apparent conductivity parameter describes an inhomogeneous geoelectrical environment in terms of a homogeneous earth that would produce the same measurement and refers to the depth relative to total conductance below the measurement station and a specific frequency. In general, depth of investigation increases with decreasing frequency and total conductance. The non-linear and complex relation is solved by inversions of the 'apparent conductivity - frequency' data into 'resistivity – depth' distribution.

Regional Geologic Context

This geophysical survey served to acquire data over properties of the Copperview Project, which is located in the Quesnel Trough in South-Central British Columbia (Figure 7). The Quesnel Trough is underlain by a thick sequence, mainly comprised of Upper Triassic and Lower Jurassic volcanoclastic and sedimentary rocks, that lie between the highly deformed rocks in the Omineca Geanticline to the east and the Upper Paleozoic Cache Creek Group in the Pinchi Geanticline to the west (Campbell and Tipper, 1970). The oldest rocks of the Quesnel Trough are the Upper Triassic black phyllite unit and the Nicola Group (Figure 8). The Upper Triassic unit consists of dark grey to black phyllite with local thin limestone beds; with differing grades of metamorphism. The Nicola Group consists dominantly of volcanoclastic rocks of basic to intermediate composition. Faults and fractures are the dominant structural features in the Quesnel Trough. The presence of copper, molybdenum, lead, zinc, silver, and gold is indicated.

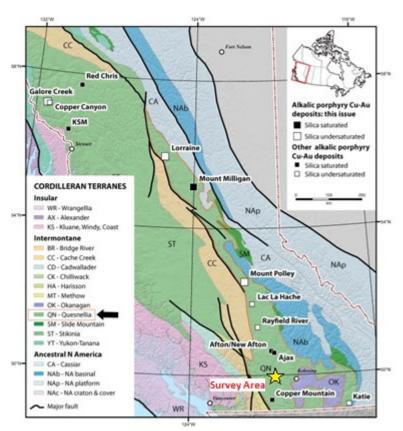


Figure 7 – Terranes of the Canadian-Alaskan Cordillera. Sources: Wheeler et al. (1991); Silberling et al. (1992); Colpron (2006). Adapted from Colpron (2007). The approximate location of the survey blocks is indicated by a yellow star.

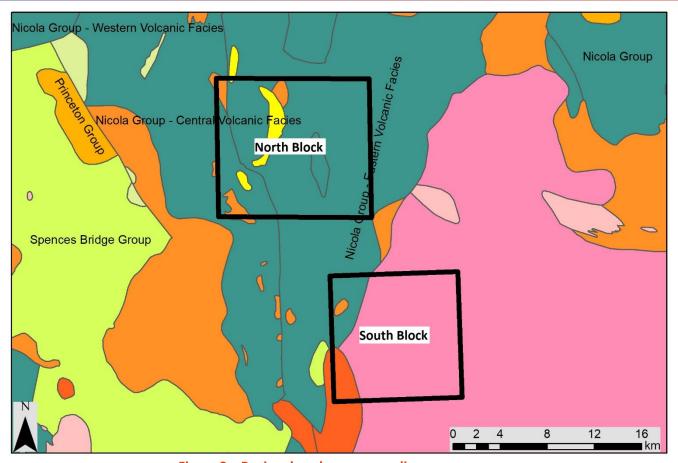


Figure 8 – Regional geology surrounding survey area.

The Quesnel Trough is known to host several alkalic Cu-Au porphyry deposits that have been host to numerous producing, past-producing and advanced development stage Cu-Au porphyry deposits. Historical exploration was largely focused on exposed surface mineral showings and several large untested copper-in-soil and gold-in-soil anomalies. Most of the economic metal endowment is concentrated within a mineralizing epoch of around 6 million years, centered around 205 Ma (Heberlein, 2012). Distinct trends of Cu-Au and Ag-Mo mineralization coincide in space and time with the effects of slab subducation (Logan and Mihalynuk, 2014). The Copperview project aims to develop potential major Cu-Au porphyry systems and polymetallic mineralization. With the detection of targets in the Quesnel Trough becoming increasingly difficult due to thick glacial overburden, it is becoming increasingly important to combine different datasets, including geophysical, structural and geochemical, as well as knowledge of known mineral deposits to discover and target buried deposits.

The general resistivity distribution for the North Block is presented in Figure 9. The geological environment of the surveyed block is in the range of inverted resistivities 550-1,500 Ohm-m (for 1d model). Possible local and discrete anomalies could relate to targets with lower absolute resistivity values than estimated since the inversion is not constrained by limited in their dimensions sources of anomalies. A few representative images elucidating the salient features of the data collected during this survey are presented in Figure 10, Figure 11, and in Appendix III.

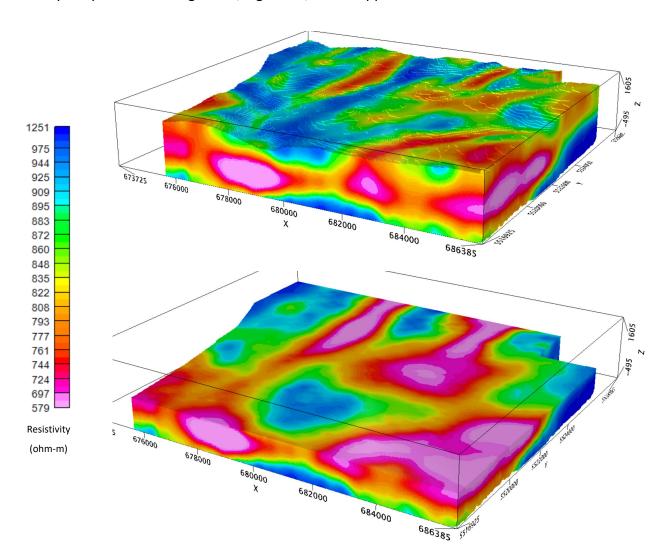


Figure 9 – 3D view of resistivity distribution for North Block. Top from surface, bottom from 500 m ASL.

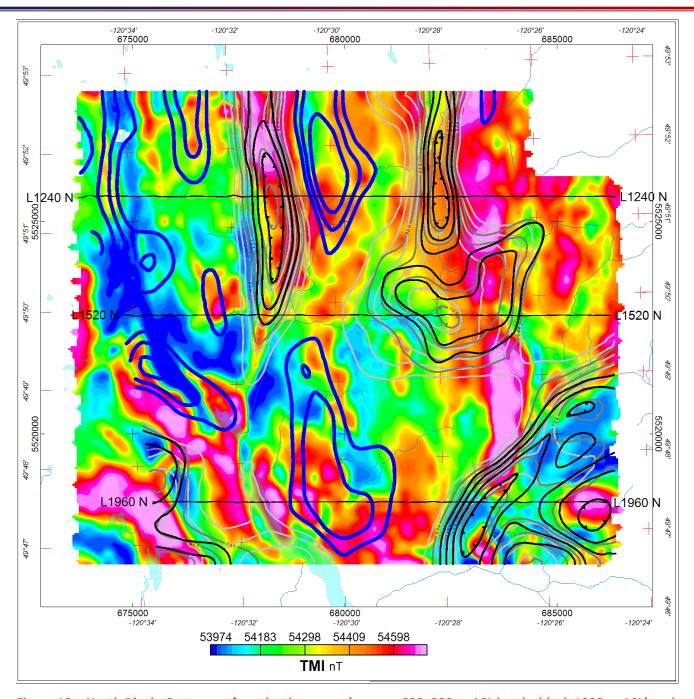


Figure 10 – North Block. Contours of conductive zones (grey on 600, 800 m ASL levels, black 1000 m ASL) and resistive zones (blue 800m ASL level) over color grid of magnetic field.

The map in Figure 10 represents spatial relationship conductive and resistive zones with the magnetic field. The three survey lines, overlapped the map, cross main comparatively deep conductive and resistive zones observed on the survey area. Resistivity sections along the lines shown in Figure 11.

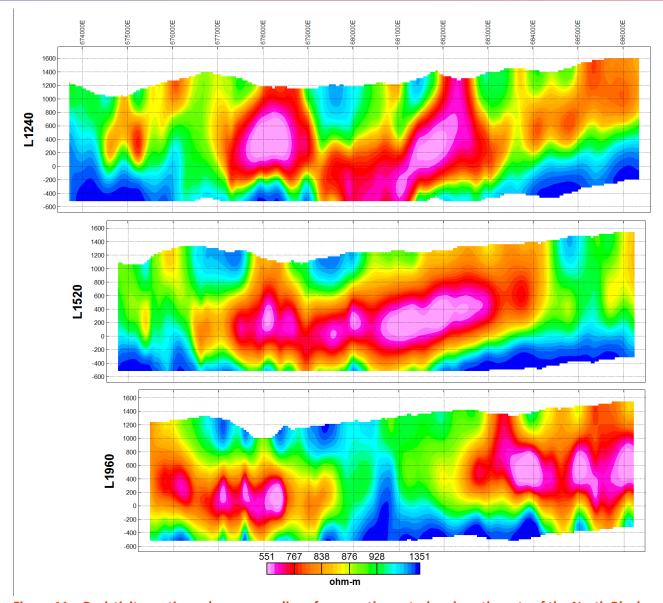


Figure 11 – Resistivity sections alone survey lines from north, central and south parts of the North Block.

South Block

The general resistivity distribution for the South Block is presented in Figure 12. The geological environment of the surveyed block is in the range of inverted resistivities 300-4,250 Ohm-m (for 1d model). Possible local and discrete anomalies could relate to targets with lower absolute resistivity values than estimated since the inversion is not constrained by limited in their dimensions sources of anomalies. A few representative images elucidating the salient features of the data collected during this survey are presented in , and in Appendix III.

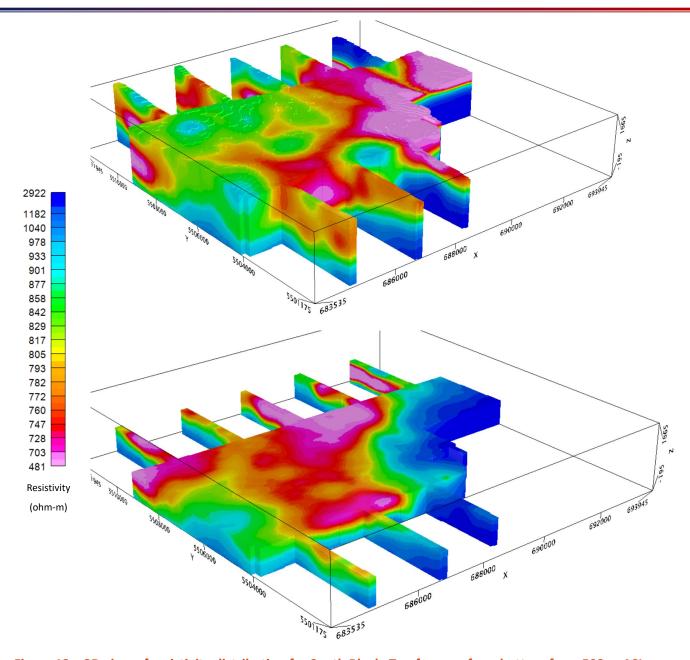


Figure 12 – 3D view of resistivity distribution for South Block. Top from surface, bottom from 500 m ASL.

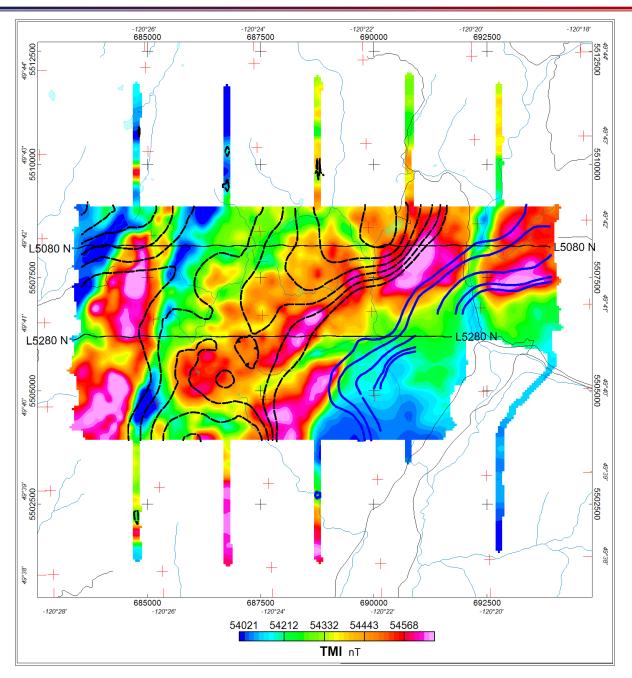


Figure 13 - South Block. Contours of conductive zones (dash black on 600 m ASL level) and resistive zones (blue 600m ASL level) over color grid of magnetic field.

The map in Figure 13 represents spatial relationship conductive and resistive zones with the magnetic field. The two survey lines overlapped the map, cross main comparatively deep conductive and resistive parts of the survey area. Resistivity sections along the lines shown in .

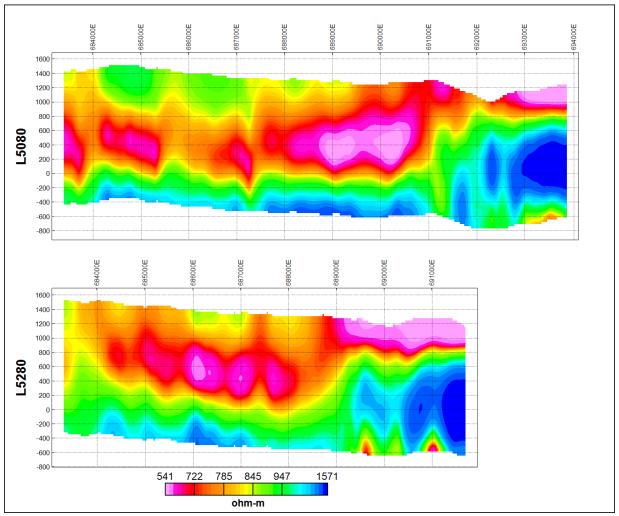


Figure 14 - Resistivity sections alone survey lines from north and central parts of the South Block

It is recommended to analyze all geophysical data, MobileMT EM, VLF and magnetic in relation to an exploration model considered for the surveyed areas and integrate these data with other available geological and geochemical information, for outlining prospective places for follow up exploration.

References

- Campbell, R. B., & Tipper, H. W. (1970). Geology and mineral exploration potential of the Quesnel trough, British Columbia. Canadian Institute.
- Colpron, M., 2006, Tectonic assemblage map of Yukon-Tanana and related terranes in Yukon and northern British Columbia: Yukon Geological Survey, Open File 2006-1, scale 1:1,000,000.
- Colpron, M., Nelson, J. L., & Murphy, D. C. (2007). Northern Cordilleran terranes and their interactions through time. GSA today, 17(4/5), 4.
- Heberlein, D., 2012, Using Geochemistry in Covered Areas of British Columbia; presented at DMEC-PDAC Workshop, March 7th, 2012, Toronto Canada.
- Logan, J. M., & Mihalynuk, M. G. (2014). Tectonic controls on early Mesozoic paired alkaline porphyry deposit belts (Cu-Au±Ag-Pt-Pd-Mo) within the Canadian Cordillera. Economic Geology, 109(4), 827-858.
- Silberling, N.J., Jones, D.L., Monger, J.W.H., and Coney, P.J., 1992, Lithotectonic terrane map of the North American Cordillera: U.S. Geological Survey Miscellaneous Investigation Map I-2176, scale 1:5,000,000.
- Wheeler, J.O., Brookfield, A.J., Gabrielse, H., Monger, J.W.H., Tipper, H.W., and Woodsworth, G.J., 1991, Terrane map of the Canadian Cordillera: Geological Survey of Canada, Map 1713A, scale 1:2,000,000.

Alexander Prikhodko, Ph.D., P.Geo

August, 12, 2021

MobileMT Job#21039 for Golden Lake Exploration Inc.

Appendix I

Company Profile

About us

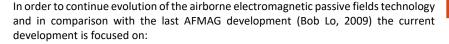
Expert Geophysics Limited is based in Toronto, Canada.

President and founder, **Andrei Bagrianski**, Ph.D., P.Geo., has over 35 years of professional experience in the acquisition, processing, and interpretation of airborne and ground geophysical data for a wide range of applications. From 2002 to 2016, he was Chief Operating Officer and General Manager at Geotech Ltd. Andrei has been directly involved in contracting, organizing, and supervising hundreds of airborne geophysical surveys on all continents except Antarctica. Andrei has extensive international field work experience that includes projects in Australia, Brazil, Bolivia, Colombia, Ecuador, Peru, Botswana, Malawi, South Africa, Libya, USA, Canada, Russia, Kazakhstan, and India.

Petr Kuzmin, Ph.D., the designer of the **MobileMT** system, has over 40 years of experience in the development of ground and airborne TDEM, MT, and IP methods, equipment, and software. Working for Geotech Ltd., Canada, from 2000 until 2009, Dr. Kuzmin was the principal designer of the award winning systems VTEM, ZTEM, and AirMt. Since 2009, Dr. Kuzmin has completed a number of successful developments: ground AFMAG, ultra-fast airborne TD (HiRes), airborne VLF system, an airborne navigation system, a high accuracy magnetometer counter, and the MobileMT. Dr. Kuzmin holds a doctorate in Geophysics, has authored nearly 20 patents, and published over 40 technical papers.

Vice President and Chief Geophysicist, **Alexander Prikhodko**, Ph.D. in geoscience, P.Geo., Executive MBA, has previously held Chief Geophysicist position, for 10 years, in a gold-platinum mining company extensively used in its mineral exploration programs borehole, ground and airborne geophysics. He has been associated with the airborne geophysics industry since 2005 (Aeroquest Limited and Geotech Ltd.) holding management positions as Regional General Manager, Data Interpretation Manager, Director of Geophysics and working on exploration projects for diverse commodities in regions over the world. He is an author and co-author of many publications dedicated to airborne EM. In 2019 he was awarded Barlow Medal for Best Geological Paper published in CIM publications (Canadian Institute of Mining, Metallurgy and Petroleum).

Services


Expert Geophysics Limited specializes in airborne geophysical surveys with advanced electromagnetic systems. **EGL** offers surveying with **Mobile MagnetoTellurics** (**MobileMT**), the most advanced generation of airborne AFMAG technologies. The patent pending **MobileMT** technology utilizes naturally occurring electromagnetic fields in the frequency range of 25 Hz – 30 000 Hz. The **MobileMT** technology is the product of extensive experience in developing equipment and signal/data processing algorithms for natural electromagnetic fields measurement. **MobileMT** combines the latest advances in electronics, airborne system design, and sophisticated signal processing techniques.

Appendix II MobileMT electromagnetic technology

MobileMT (Mobile MagnetoTellurics) is a newly developed approach to electromagnetic data acquisition from synchronized a towed three component inductive magnetic sensor and grounded two orthogonal electric lines. The system is designed and implemented in order to overcome existing limitations of airborne techniques based on passive electromagnetic fields principles and, ultimately, for improving exploration efficiency.

MobileMTis a passive airborne electromagnetic technique that records magnetic (in the air) and electric (on the ground) fields generated by natural sources in the audio frequency range. The natural electromagnetic primary field sources for MobileMT are considered with frequencies ranging from 25 Hz to 30 kHz (ELF+VLF). The exploration system includes two pairs of grounded electric wire lines, one of them is for reference signal, and moving three-component inductive coil system softly suspended and with low-noise signal amplifiers for magnetic field measurements (dB/dt) in three orthogonal directions. A crucial element of the technology is the capability of aerial acquisition magnetotelluric data in four decades frequency band. Field data are acquired using stationary orthogonal pairs of electrical field sensors (grounded wire dipoles) and towed magnetic field detectors (three orthogonal induction coils).

- Expanding measured frequencies range into high end to complement deep exploration with near surface, shallow and medium depth of investigation;
- Increasing sensitivity and reducing system noise level to provide with data at low natural electromagnetic fields signal conditions
 especially in the range of the last hundred first thousands Hz frequencies band where the field spectral density is lowest
 (dead-band);
- Providing ability to recover electrical properties differences between geological boundaries of any direction, including and between horizontal and vertical boundaries;
- Increasing spatial and frequency data resolution;
- Measuring of elements of admittance-type transfer functions of the magnetotelluric field.

Theory and Method

Some part of the thunderstorm energy is converted into electromagnetic fields that are propagated in the ionosphere-Earth interspace. These electromagnetic fields and the currents induced by these fields in the subsurface are used in audiomagnetetotelluric prospecting to measure the electrical resistivity of geological environment.

Measuring telluric currents induced by the natural electromagnetic fields in the subsurface on the ground synchronised with measuring the magnetic components of the natural audio frequency electromagnetic fields in the air and mutual processing both airborne and ground data (Figure 1) is a way to improve the quality and increase informative of the measured airborne data. In practice the reference fields may be measured by inductive coils or grounded electric lines (Labson et al., 1985). To obtain accurate signal of the natural field spectrum and eliminate noise spectra of sensors we use electrical field measurements at the base station. One of the reasons of choosing electrical components for reference is capacity to control the natural signal strength in the wire lines. Each electrical field component on the base station is registered independently from two sensors, signal and reference, which is utilized to eliminate the data bias distortions (Labson et al., 1985). This technical solution is critically helpful in periods of weak natural field signals in some frequency bands.

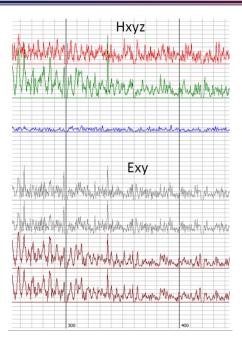


Figure 1. A section of time series of Exy and Hxyz data

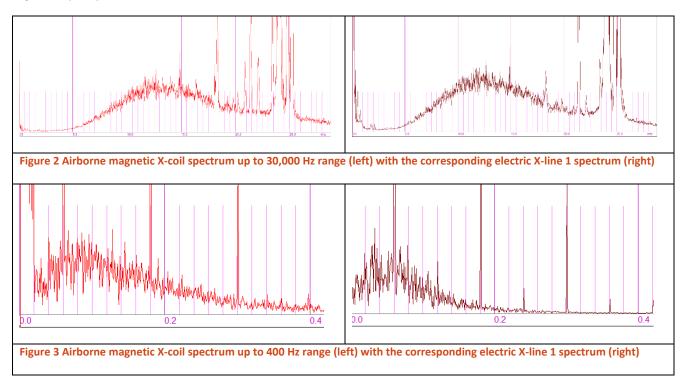
Exploiting signals of two horizontal electric components along with three magnetic components we can process them with the magnetotellurics response functions based on linear relations between components of the electric and magnetic fields. In general, processing of the field data is based on the Larsen and Chave robust remote-reference method (Chave et al., 1987; Larsen, 1989). The data processing program merges the stationary measured electrical two horizontal components and the moving orientation irrelevant receiver of three magnetic field components into one file. The program applies FFT technique to the recordings and calculates the matrixes of the relations between the electric and magnetic signals (six admittances) on the different time bases and in different frequency bands. In the result of modular computation of the matrixes determinants, as rotation invariant parameters, we calculate apparent conductivity in mS/m as a parameter of EM mapping. The rotation invariant parameters are free from the receiver motion distortions. The admittances (Y) are represented as the electric field horizontal vectors projection into the space of the magnetic field three components. In other words, the combined system measures combination of tensor and scalar (rotational invariant) components as the transfer function of a total magnetic field, through the three orthogonal directions measurements of an airborne receiver, to the two orthogonal horizontal directions of electric field measured at a ground base location. Generalizing the Weiss-Parkinson relationship (Berdichevsky and Zhdanov, 1984), such as that measured three orthogonal magnetic field components (Hxyz) are linearly related to the horizontal electric fields measured on the ground (Exy, reference), with adoption it to the admittances domain (Y):

$\begin{bmatrix} Hx \\ Hy \\ Hz \end{bmatrix} = \begin{bmatrix} Yxx & Yxy \\ Yyx & Yyy \\ Yzx & Yzy \end{bmatrix} \begin{bmatrix} Ex \\ Ey \end{bmatrix}$	(1)	
---	-----	--

Solutions of the equations are obtained by averaging over a number of closely spaced frequencies **Error! Reference source not found.**(Table below).

An example of frequency windows used for harmonics averaging. Base 15 Hz, Gates ratio 2.

	Window, Hz			
N	start	end	mid	
1	15	30	23	
2	30	68	49	
3	68	135	101	
4	135	270	203	
5	270	540	405	
6	540	1080	810	
7	1080	2160	1620	
8	2160	4320	3240	
9	4320	8640	6480	
10	8640	17280	12960	
11	17280	28800	23040	



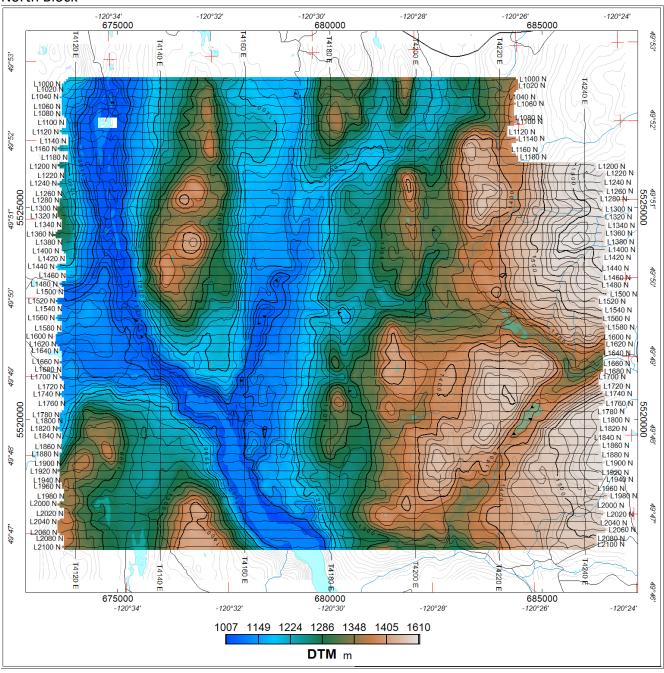
The windowing way is flexible and can be optimized depending on signals, cultural noise and an exploration task.

H (magnetic) and E (electric) components time series data, fully synchronized, digitized and recorded at 73,728 Hz frequency, is converted from time to frequency domain using FFT technique. The complex data spectrums (field examples in 2 and 3) is expressed in apparent conductivity (σ) equivalent to its real part:

$$\sigma = \mu \omega |Y^2| \tag{2}$$

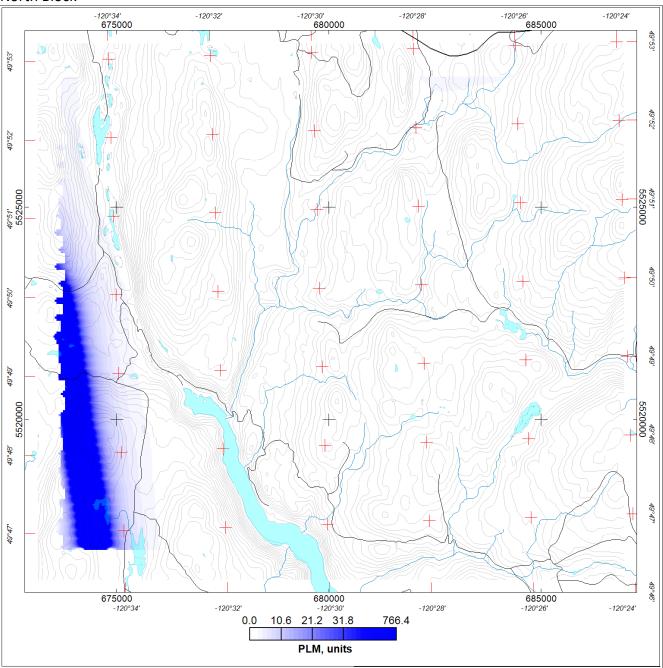
where \mathbf{Y} is the determinant of the corresponded matrix in (1); $\mathbf{Y}^2 = \text{im}(\mathbf{Y}^2)/\text{re}(\mathbf{Y}^2)$; μ is the magnetic permeability of free air and ω is the angular frequency.

References

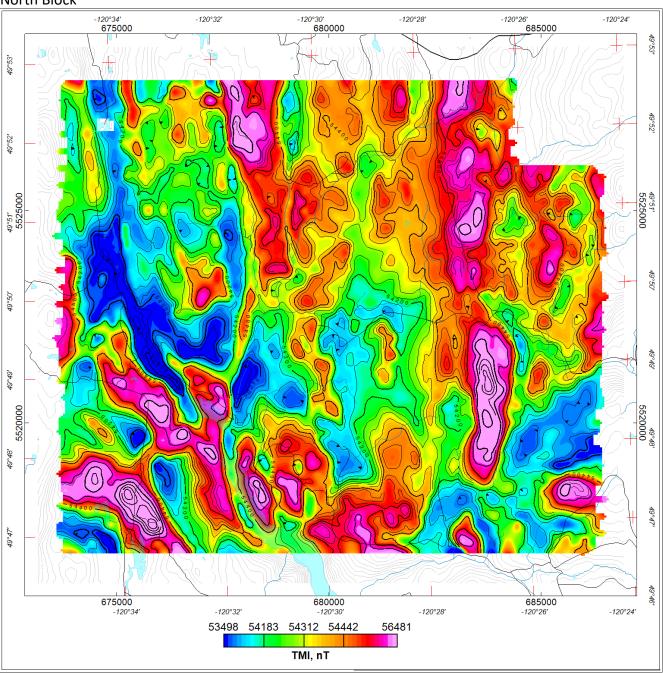

Berdichevsky, M.N., and M.S. Zhdanov (1984), Advansed theory of deep geomagnetic sounding: Elseiver.

- Chave, A. D., Thomson, D. J., and Ander, M. E. (1987), On the Robust Estimation of Power Spectra, Coherences, and Transfer Functions: Journal of Geophysical Research, **92**, 633-648.
- Labson, V.F., A.Becker, H.F.Morrison, and U.Conti (1985), Geophysical exploration with audio frequency natural magnetic fields: Geophysics, **50**, 656-664.
- Larsen, J. C. (1989), Transfer functions: smooth robust estimates by least-squares and remote reference methods: Geophysical Journal International, **99**, 645-663.
- Lo, B., J. Legault, P.Kuzmin (2009), Z-TEM (airborne AFMAG) tests over unconformity uranium deposits. Extended Abstract 20th International Geophysical Conference and Exhibition, Adelaide, South Australia.

Appendix III MobileMT maps images¹

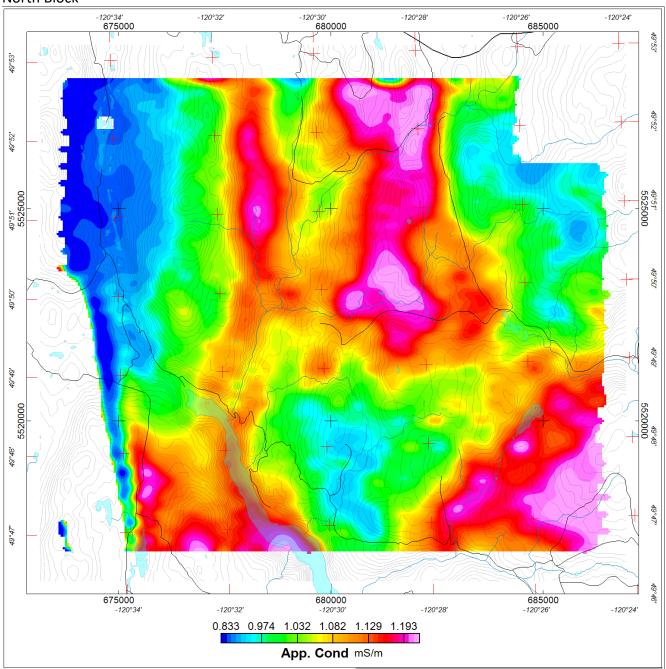

North Block

Digital Terrain Model (DTM)


¹ Only selected maps are presented in the Appendix. A full set of maps is following the report in geosoft and pdf formats.

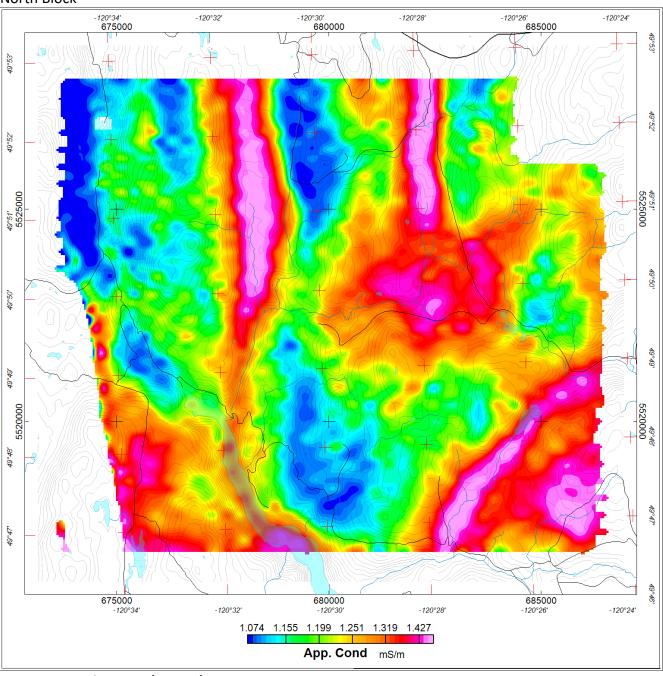
Powerline Monitor

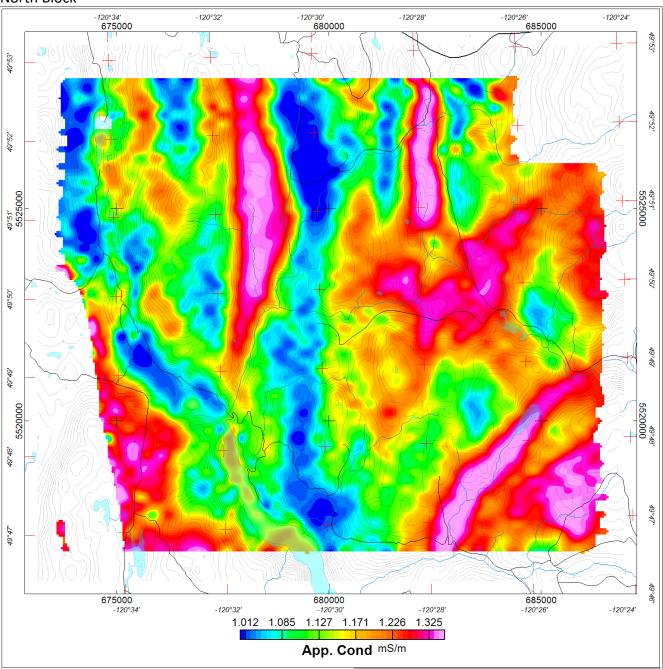
Total Magnetic Intensity Map (TMI)

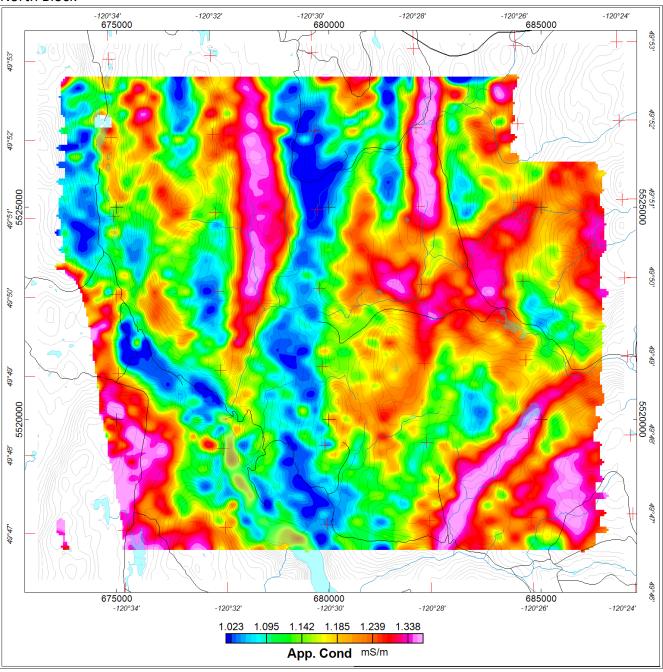


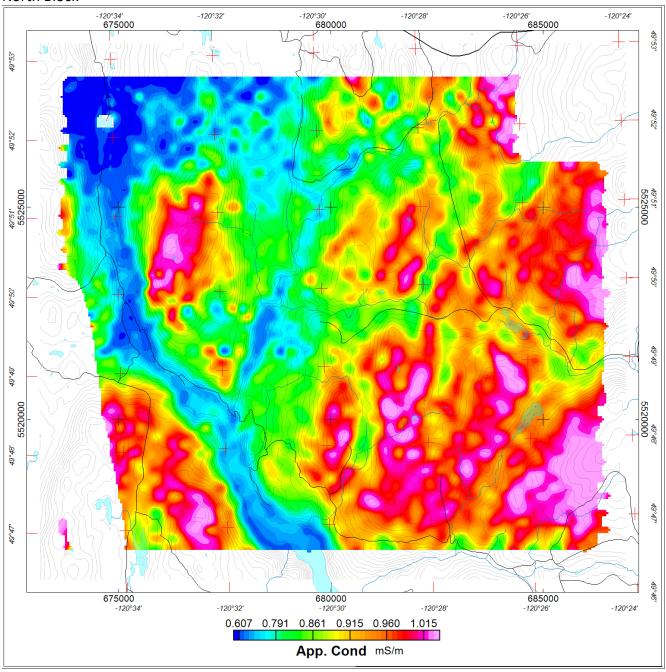
North Block -120°26′ 685000 -120°34′ 675000 -120°28' -120°32' -120°30′ 680000 -120°24' 49°53' 49°52' 49°50' 49°50' 49°48' 5520000 49°47' 675000 680000 685000 -120°32′ -120°28′ -120°26′ -120°24' -1.592 -0.224 0.083 0.549

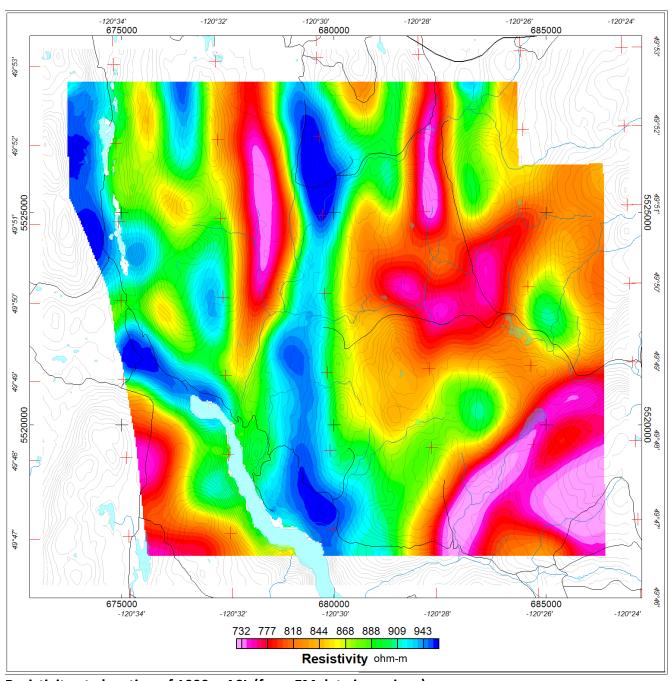
TMI CVG nT/m

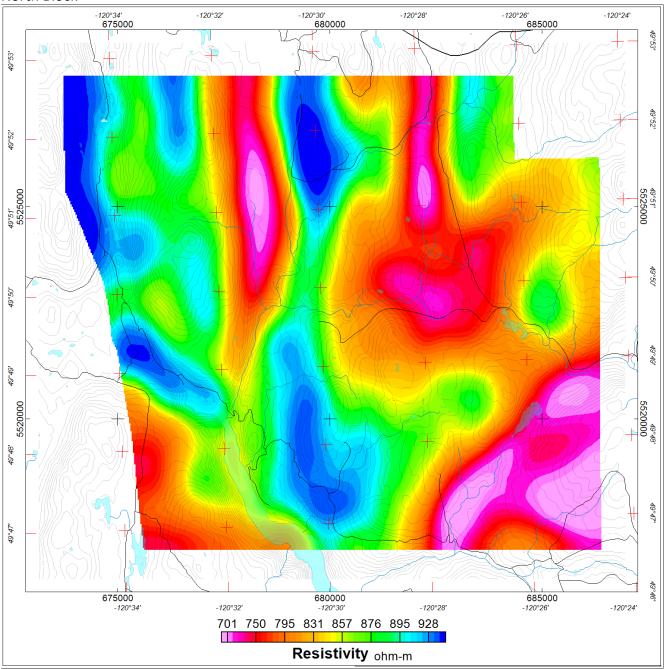

Calculated Vertical Derivative Map of magnetic field (CVG-TMI)

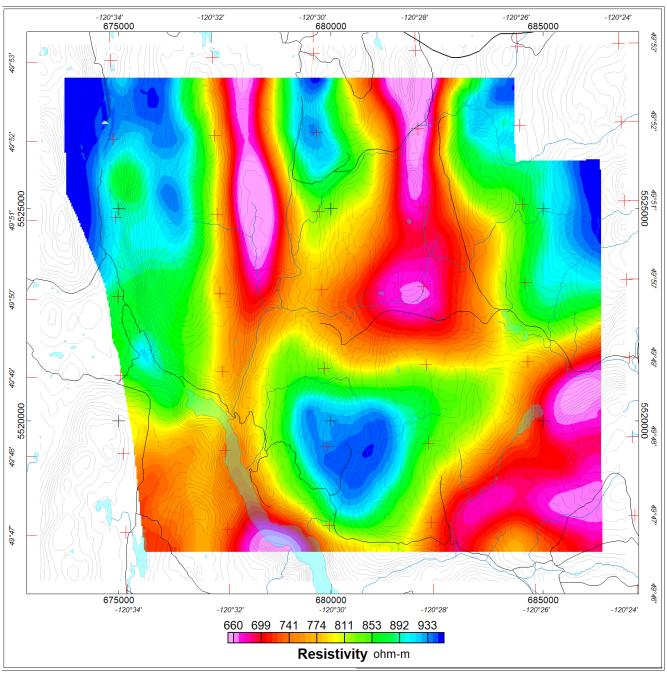

apparent conductivity (26 Hz)


apparent conductivity (101 Hz)

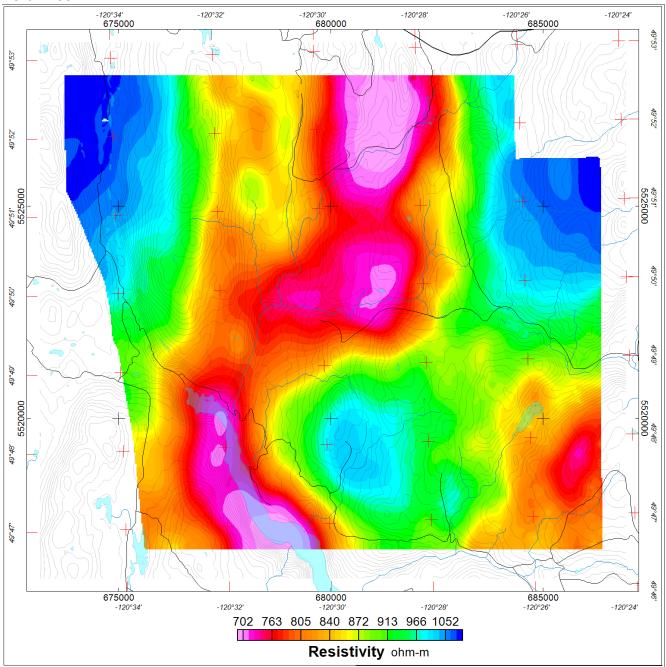

Apparent conductivity (268 Hz)


Apparent conductivity (341 Hz)


Apparent conductivity (4274 Hz)


Resistivity at elevation of 1000m ASL (from EM data inversions)

Resistivity at elevation of 800 m ASL



Resistivity at elevation of 400m ASL

Resistivity at elevation of -200m ASL

North Block -120°26′ 685000 -120°34′ 675000 -120°30′ 680000 -120°28′ -120°32' -120°24' 49°53' 49°51′ 5525000 49°50' 49°49' 49°48' 5520000 49°47'

680000 -120°30'

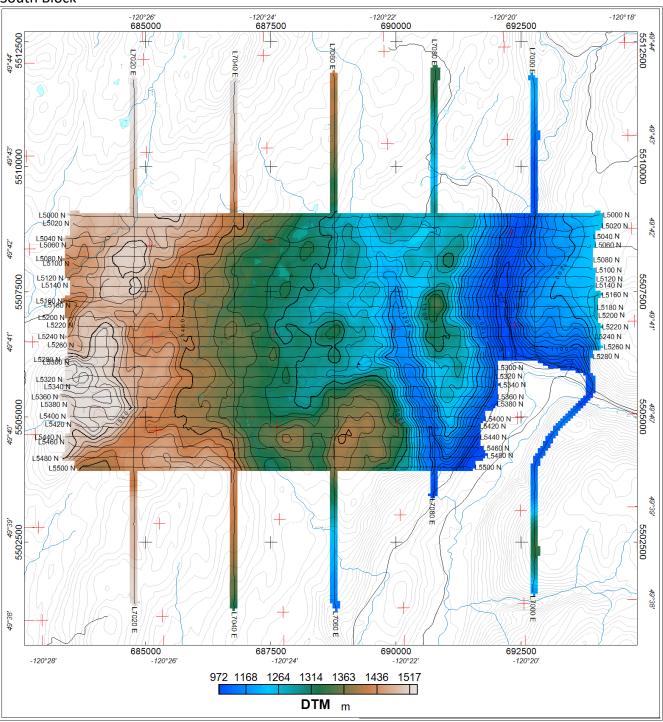
0.1314 0.1438 0.1494 0.1542 0.1611

Amplitude

-120°28′

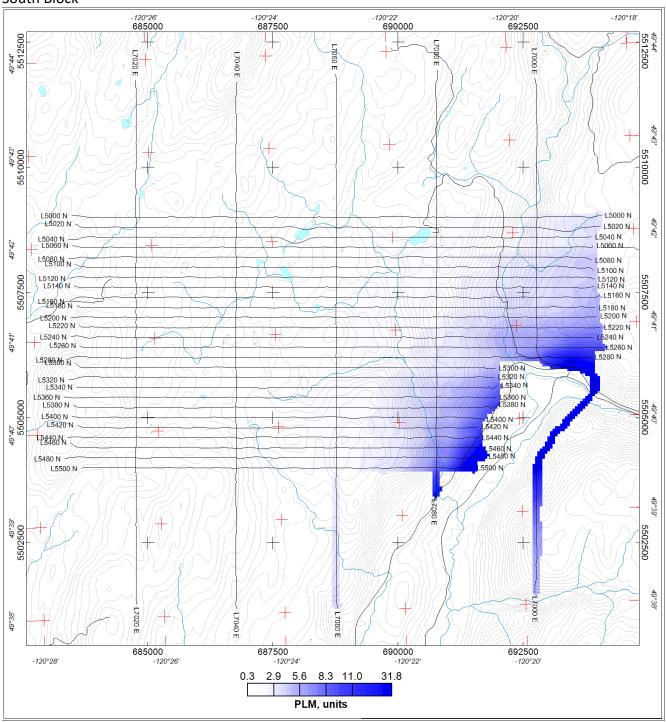
-120°32′

VLF amplitude map, 24.0 kHz

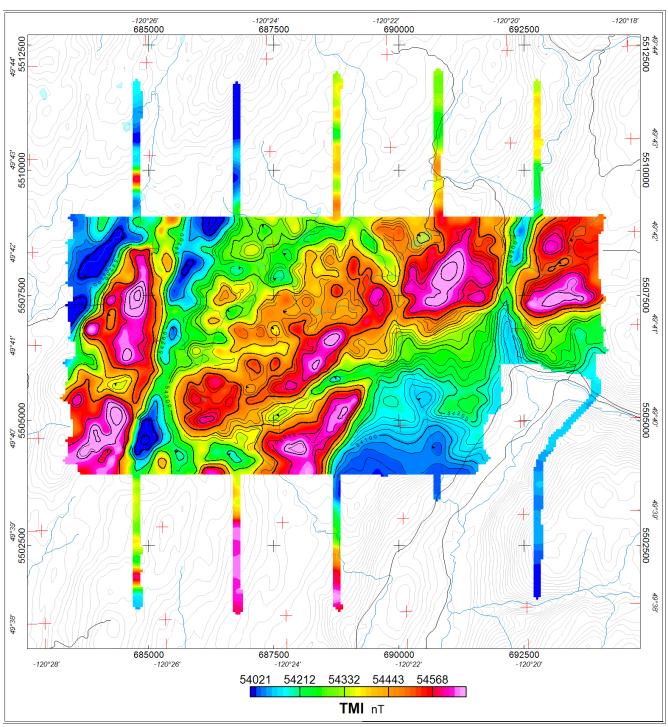

675000

685000 -120°26′

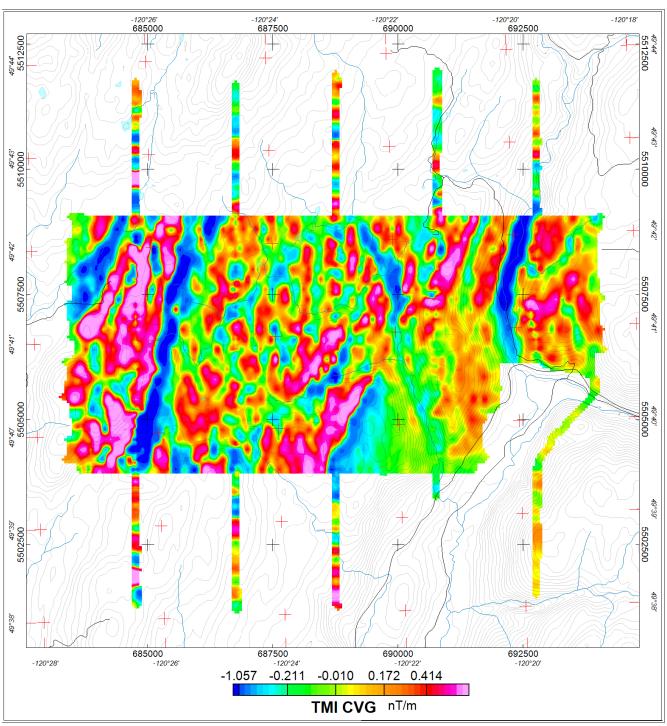
-120°24'

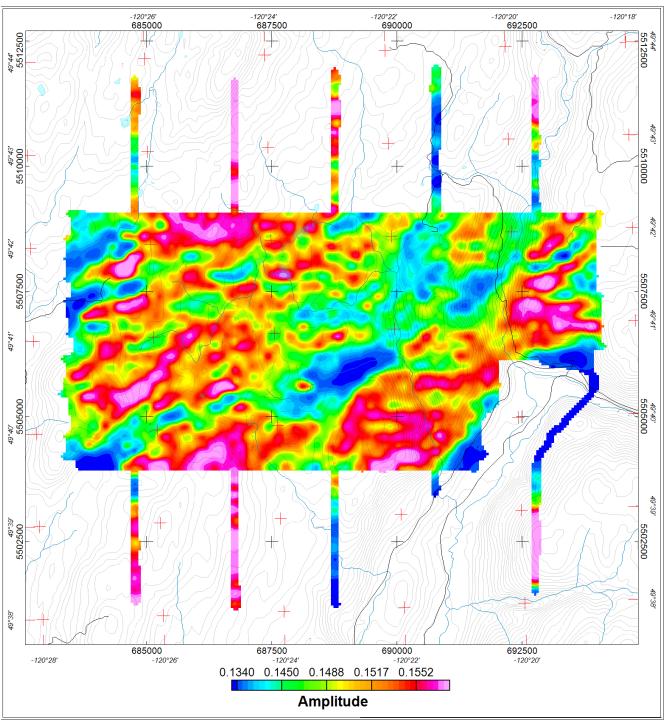

South Block

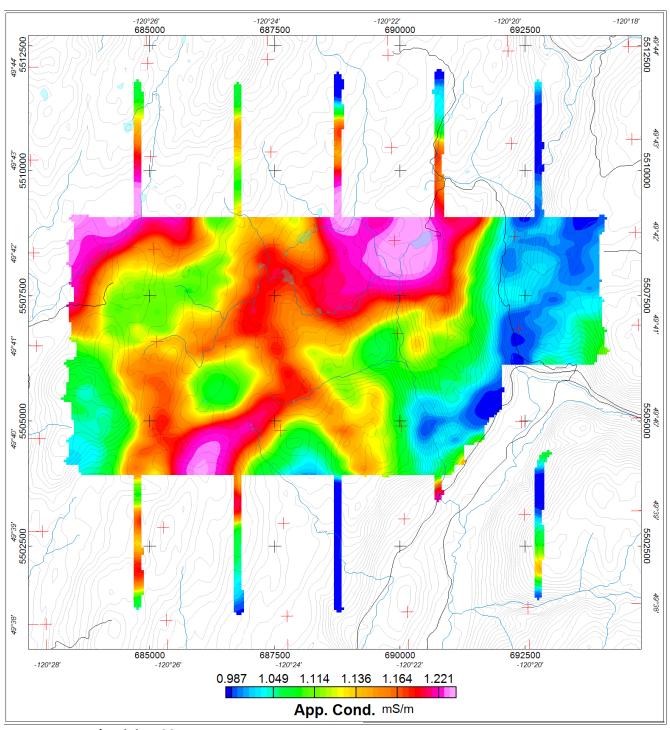
Digital terrain model (DTM)

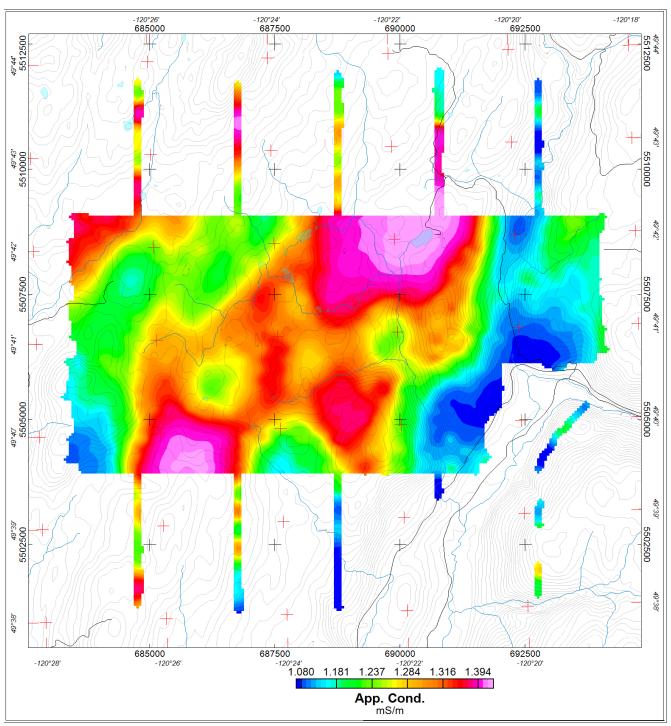


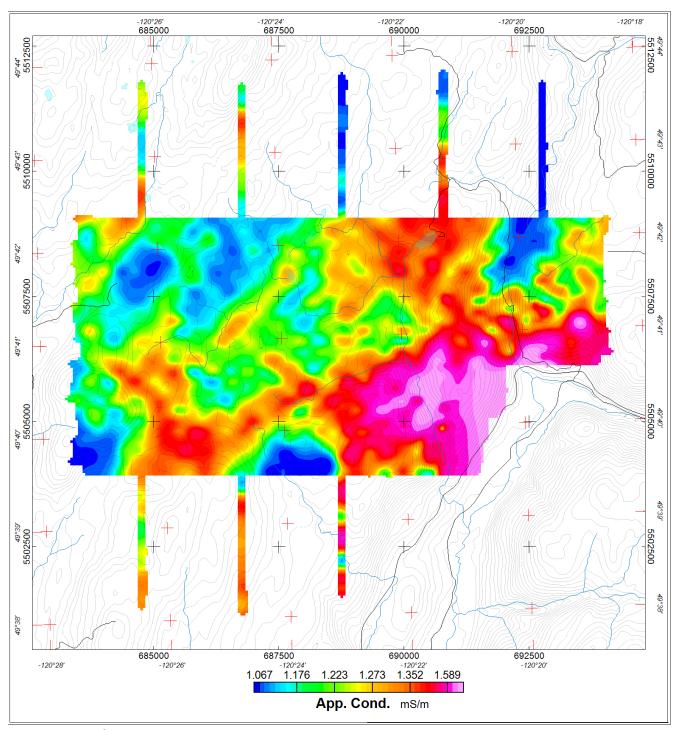
South Block


Powerline monitor

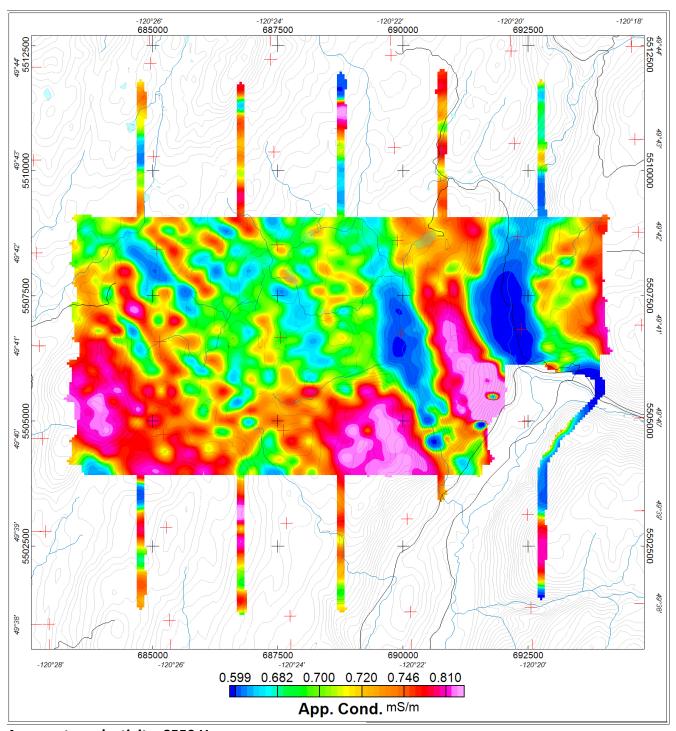

Total magnetic intensity (TMI)

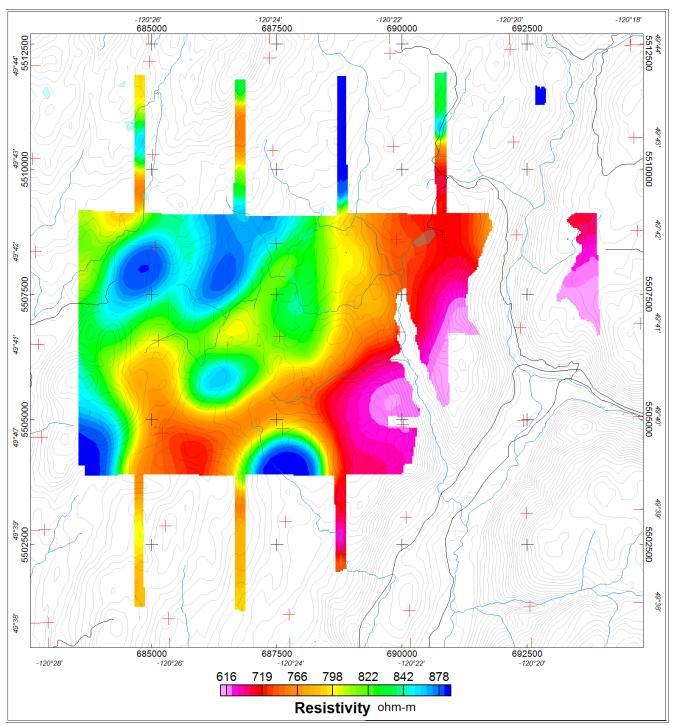

Calculated vertical gradient of total magnetic intensity (CVG-TMI)

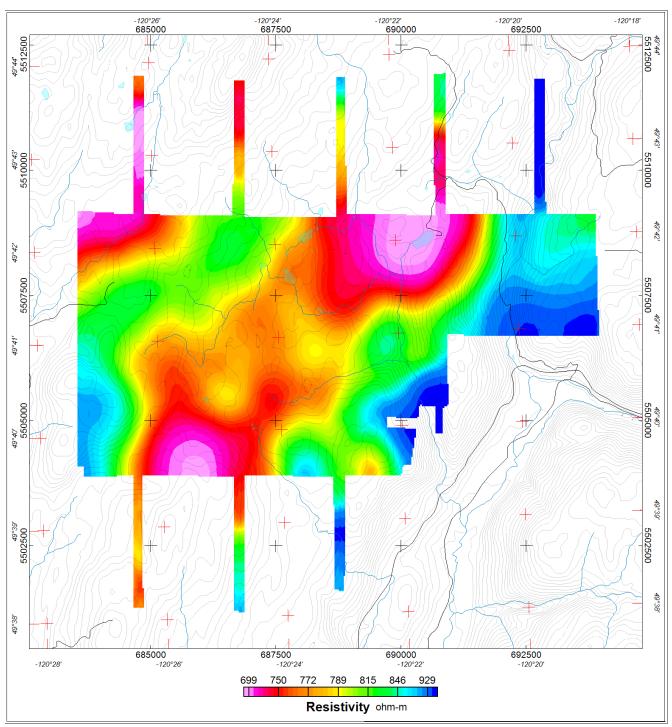

VLF secondary field amplitude at frequency of 24.0 kHz

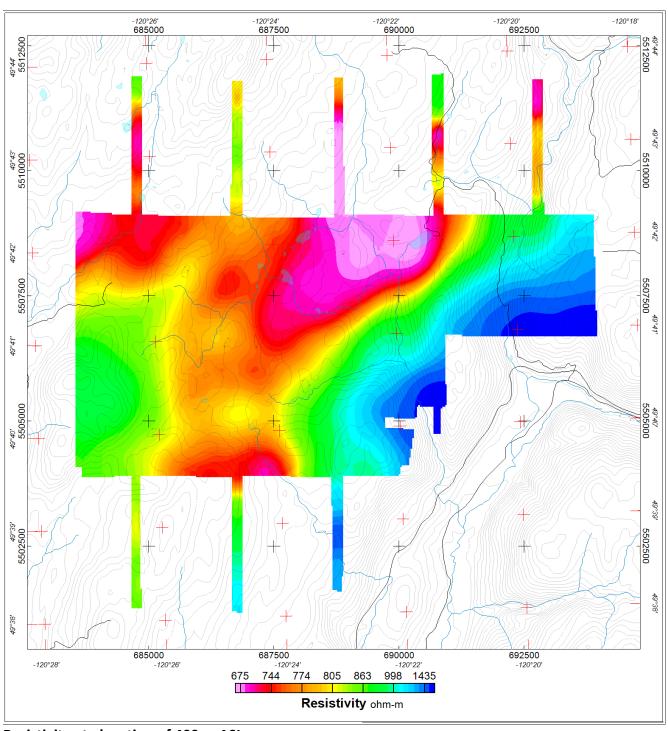

Apparent conductivity, 33 Hz

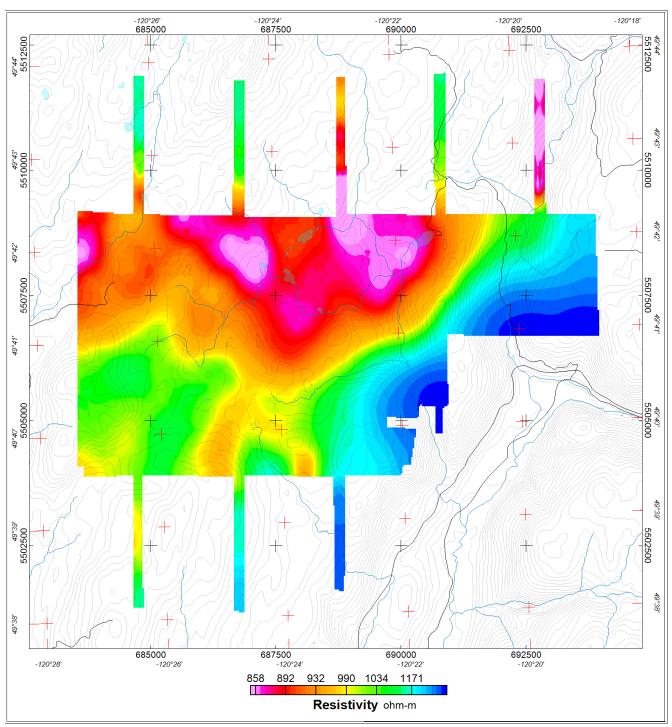
Apparent conductivity, 101 Hz


Apparent conductivity, 268 Hz


Apparent conductivity, 533 Hz


Apparent conductivity, 8550 Hz


Resistivity at elevation of 1200 m (from EM data inversions)


Resistivity at elevation of 800 m ASL

Resistivity at elevation of 400 m ASL

Resistivity at elevation of -100 m ASL

APPENDIX E

SOIL SAMPLES SUMMARY TABLES

Sample #	Easting	Northing	Sampler	Date	Horizon	Depth (cm)	Colour	Class	Comments	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Mo ppm	Sb ppm
3201	684876	5519956	CR	2021-08-20	В	15	Light brown	Sandy clay loam		2	0.07	26	4	25	2.3	0.37	0.13
3202	684910	5519915	CR	2021-08-20	В	15	Light brown	Sandy clay loam		2	0.04	25	3	26	1.8	0.32	0.16
3203	684947	5519879	CR	2021-08-20	В	12	Light brown	Sandy clay loam		3	0.02	18	4	21	1.8	0.37	0.11
3204	684973	5519846	CR	2021-08-20	В	22	Grey	Clay loam		1	0.04	23	4	13	0.5	0.1	0.05
3205	685008	5519818	CR	2021-08-20	В	18	Light brown	Sandy clay loam		2	0.19	62	4	36	1.8	0.29	0.12
3206	685052	5519778	CR	2021-08-20	В	18	Light brown	Sandy clay loam		3	0.07	20	4	34	1.4	0.26	0.11
3207	685101	5519741	CR	2021-08-20	В	26	Light brown	Sandy clay loam		1	0.05	18	4	35	1.6	0.35	0.1
3208	685119	5519717	CR	2021-08-20	В	22	Brown	Clay loam		2	0.09	46	6	53	1.7	0.67	0.14
3209	685164	5519679	CR	2021-08-20	В	18	Brown	Sandy clay loam		1	0.12	30	4	57	2	0.47	0.15
3210	685206	5519642	CR	2021-08-20	В	20	Light brown	Sandy clay loam		2	0.07	27	4	46	1.7	0.53	0.12
3211	685237	5519607	CR	2021-08-20	В	18	Light brown	Sandy clay loam		1	0.16	57	4	52	1.9	0.38	0.12
3212	685272	5519576	CR	2021-08-20	В	21	Light brown	Sandy clay loam		0	0.21	42	4	51	1.8	0.43	0.09
3213	685311	5519538	CR	2021-08-20	В	19	Grey	Sandy clay loam		1	0.1	28	4	37	2.2	0.37	0.09
3214	685340	5519506	CR	2021-08-20	В	22	Light brown	Sandy clay loam		1	0.12	34	4	35	1.8	0.36	0.11
3215	685377	5519466	CR	2021-08-20	В	25	Light brown	Sandy clay loam		3	0.11	27	4	33	1.8	0.44	0.12
3216	685423	5519426	CR	2021-08-20	В	32	Light brown	Sandy clay loam		1	0.08	32	4	32	1.8	0.31	0.1
3217	685477	5519392	$\overline{}$	2021-08-20	В	28	Light brown	Sandy clay loam		2	0.08	32	4	28	1	0.22	
3218	685497	5519363	CR	2021-08-20	В	18	Light brown	Clay loam		1	0.08	53	4	29	1.8		
3219	685513	5519335	CR	2021-08-20	В	22	Light brown	Sandy clay loam		2	0.15	68	4	25	1.7	0.24	0.14
3220	685565	5519296		2021-08-20	В	36	Brown	Clay loam		7	0.22	92	4	24	2.1	0.24	0.13
3221	685593	5519270		2021-08-20	В	22	Light brown	Sandy clay loam		1	0.1	39	3	27	1.3	0.22	0.13
3222	685645	5519230		2021-08-20			Light brown	Sandy clay loam		2	0.06	21	3	24	0.8	0.19	
3223	685683	5519194		2021-08-20	_	28	Light brown	Sandy clay loam		5	0.13	29	3	28	1	0.18	
3224	685710	5519168		2021-08-20		20	Light brown	Sandy clay loam		3	0.17	35	3	33	1.1	0.23	
3225	685754	5519124		2021-08-20				Clay loam		2	0.06	42	4	39	1	0.25	
3226	685784	5519095		2021-08-20	_		Light brown	Sandy clay loam		3	0.06	32	4	34	1	0.24	
3227	685819	5519064		2021-08-20	_		Light brown	Sandy clay loam		3	0.05	51	3	40	1.7		
3228	685863	5519024		2021-08-20			Light brown	Sandy clay loam		2	0.12	51	4	28	1.3		
3229	685894	5518993		2021-08-20	_	20		Sandy clay loam		3	0.08	31	4	37	3.1	0.24	
3230	685932	5518955		2021-08-20	_		Light brown	Sandy clay loam		1	0.11	43	4	47	2.5	0.4	
3231	684860	5519154		2021-08-20	_	25	Light brown	sandy loam		3	0.08	30	5	42	3.1	0.47	0.15
3232	684814	5519195		2021-08-20	_	25		sandy loam		1	0.15	35	5	26	1.9		
3233	684779	5519227	_	2021-08-20		25		sandy loam		3	0.1	32	5	32	1.6		
3234	684745	5519263		2021-08-20			Light brown	sandy loam		1	0.18	33	5	31	1.9		
3235	684713	5519295		2021-08-20			Light brown	sandy loam		1	0.12	28	5	27	1.3		
3236	684674	5519325		2021-08-20	_			sandy loam		1	0.13	37	4	28	1.6		
3237	684643	5519356	_	2021-08-20			Light brown	sandy loam		7	0.03	51	3	32	3.3		
3238	684602	5519393		2021-08-20		30		sandy loam		3	0.2	50	4	28	2.7		
3239	684564	5519428		2021-08-20		30	brown	sandy loam		3	0.09	26	4	19	1.9		
3240	684488	5519497	_	2021-08-20	_	30		sandy loam		1	0.08	23	5	22	1.4	0.2	-
3241	684452	5519526	-	2021-08-20	_		Light brown	sandy loam		2	0.09	23	5	21	1.1	0.24	
3242	684413	5519596		2021-08-20	_	30		sandy loam		4	0.03	30	2	26	2.5	0.3	
3243	684413	5519595		2021-08-20		30		sandy loam		2	0.08	21	4	27	1.2	0.23	
3244	685770	5519875		2021-08-21		25		Sandy loam		1	0.18	29	4	42	2.6		
3245	684083	5519863	$\overline{}$	2021-08-20			Light brown	sandy loam		1	0.11	19	3	27	1.6		
3246	684127	5519835	AL	2021-08-20	В	30	Light brown	sandy loam		3	0.14	60	5	30	1.5	0.25	0.12

3247	684155	5519798	AL	2021-08-20	В	30	Light brown	sandy loam		16	0.15	19	4	56	1.3	0.49	0.11
Sample #	Easting	Northing	Sampler	Date	Horizon	Depth (cm)	Colour	Class	Comments	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Mo ppm	Sb ppm
3248	684200	5519765	AL	2021-08-20	В	30	Light brown	sandy loam		1	0.07	10	4	32	1.6	0.32	0.09
3249	684238	5519727		2021-08-20			Light brown	sandy loam		3	0.1	18	3	29	1.8	0.35	0.13
3250	684268	5519700		2021-08-20	_	30		sandy loam		2	0.09	23	4	25	1.5	0.3	0.1
3251	684307	5519665		2021-08-20		30		sany clay loam		2	0.08	30	4	27	1.6	0.21	0.1
3252	685804	5519845		2021-08-21	_	25		sandy loam		3	0.22	27	4	50	2.2	0.45	0.15
3253	685848	5519806		2021-08-21			Light brown	sandy loam		0	0.23	25	5	46	2.2	0.5	0.15
3254 3255	685884 685918	5519772 5519739		2021-08-21			Light brown Light brown	sandy loam sandy loam		2	0.29	43 47	5	51 29	2.4 1.7	0.56 0.45	0.17 0.14
3256	685954	5519712		2021-08-21	_		Light brown	sandy loam		0	0.21	20	6	35	2.1	0.43	
3257	686033	5519640		2021-08-21	_	30		sandy loam		1	0.23	40	4	44	1.9	0.41	0.15
3258	686069	5519599		2021-08-21		40		sandy clay loam		2	0.32	112	4	28	1.3	0.32	0.12
3259	686110	5519580		2021-08-21		40	Light brown	sandy clay loam		2	0.41	141	4	29	1.4	0.35	0.13
3260	684529	5519465	AL	2021-08-20		25	brown	sandy loam		3	0.12	30	5	24	1.9	0.3	0.16
3261	684842	5519987	CR	2021-08-21	В	20	Light brown	Sandy clay loam		2	0.09	24	3	26	2.1	0.4	0.14
3262	684814	5520028	CR	2021-08-21	В		Light brown	Sandy clay loam		2	0.03	15	3	19	1.7	0.26	0.12
3263	684583	5520226		2021-08-21			Light brown	Sandy clay loam		1	0.06	19	4	18	1.8	0.3	0.09
3264	684546	5520265		2021-08-21			Brown	Sandy clay loam		3	0.13	35	4	46	2.7	0.48	0.15
3265	684513	5520294		2021-08-21			Brown	Sandy clay loam		12	0.11	40	4	48	2.2	0.51	0.17
3266	684473	5520326		2021-08-21	_	35	•	Sandy clay loam		9	0.11	27	4	48	3	0.48	0.14
3267	684440 684402	5520358 5520389		2021-08-21			Light brown Light brown	Sandy clay loam Sandy clay loam		16 6	0.12	46	5	45	4.7	0.6	0.22
3268 3269	684371	5520389		2021-08-21			Light brown	Sandy clay loam		7	0.12	32 37	4	50 44	3.8 2.7	0.57	0.16
3270	684328	5520471		2021-08-21			orange brown	Clay loam		18	0.34	33	5	55	3	0.47	0.14
3271	685967	5518923		2021-08-20	_		Light brown	Sandy clay loam		2	0.08	40	4	45	2.2	0.38	0.15
3272	684290	5520505		2021-08-21	В		Light brown	Sandy clay loam		4	0.13	26	5	47	3.2	0.49	0.16
3273	684260	5520535	CR	2021-08-21	-	26	Light brown	Sandy clay loam		2	0.14	21	4	36	2.5	0.48	0.14
3274	684217	5520558	CR	2021-08-21	В	32	Brown	Sandy clay loam		3	0.17	27	4	49	3.1	0.4	0.14
3275	684179	5520605	CR	2021-08-21	В	20	Brown	Sandy clay loam		2	0.09	23	6	34	3.1	0.61	0.15
3276	686552	5519177		2021-08-21			Light brown	Sandy clay loam		3	0.09	21	4	40	1.9	0.54	0.15
3277	686506	5519201		2021-08-21			Light brown	Sandy clay loam		1	0.23	29	5	38	2.1	0.35	0.12
3278	686472	5519239		2021-08-21			Light brown	Sandy clay loam		1	0.11	20	5	43	1.4	0.41	0.12
3279	686429	5519273		2021-08-21			Light brown	Sandy clay loam		2	0.17	18	5	42	1.8	0.52	0.15
3280 3281	684954 684922	5520632 5520670		2021-08-22			Light brown Brown	Sandy clay loam Clay loam		3	0.1	15 22	5 4	24	1.5	0.33	0.12
3282	684887	5520670		2021-08-22			Brown	Clay loam		3	0.25	19	3	24 33	2.8	0.39	0.18
3283	684846	5520737		2021-08-22	_		Brown	Clay loam		1	0.14	26	4	31	2.5	0.35	0.15
3284	684809	5520768		2021-08-22	_		Brown	Sandy clay loam		2	0.07	18	4	35	2.3	0.43	0.14
3285	684766	5520807		2021-08-22			Brown	Clay loam		1	0.14	22	4	42	2.6	0.38	0.15
3286	684735	5520835		2021-08-22	В		Brown	Clay loam		1	0.12	27	4	41	2.3	0.37	0.14
3287	684699	5520868	CR	2021-08-22	В	24	Light brown	Sandy clay loam		4	0.1	31	4	34	2.8	0.4	0.14
3288	684666	5520908	CR	2021-08-22	В	32	Light brown	Sandy clay loam		5	0.15	22	4	36	2.3	0.45	0.12
3289	684628	5520937	CR	2021-08-22		22		Sandy clay loam		1	0.1	26	4	35	1.9	0.4	0.15
3290	684592	5520968		2021-08-22	_		Light brown	Sandy clay loam		3	0.08	22	5	35	2.1	0.47	0.11
3291	684561	5521016		2021-08-22			Light brown	Sandy clay loam		1	0.06	18	4	30	1.8	0.44	0.12
3292	686139	5519539	AL	2021-08-21	В	30	Light brown	sandy loam		5	0.36	103	4	35	2.3	0.69	0.21

3339	685389	5520224	AL	2021-08-23	В	20	Brown	Sandy loam		1	0.08	16	4	19	1.7	0.46	0.09
3340	685434	5520188	$\overline{}$	2021-08-23	_		Brown	Sandy clay loam		1	0.05	47	4	22	1.7	0.36	0.15
3341	685476	5520154		2021-08-23			Brown	Sandy loam		1	0.17	47	4	23	0.9	0.53	0.12
Sample #	Easting	Northing	Sampler	Date	Horizon	Depth (cm)	Colour	Class	Comments	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Mo ppm	Sb ppm
3342	685503	5520119	AL	2021-08-23	В	5	Brown	Sandy loam		1	0.08	15	4	18	1.4	0.56	0.11
3343	685537	5520090	AL	2021-08-23	В	30	Brown	Sandy loam		2	0.15	30	3	31	2.1	0.77	0.15
3344	685585	5520056	AL	2021-08-23	В	35	Brown	Sandy loam		1	0.22	47	4	47	1.8	0.97	0.2
3345	685619	5520012	AL	2021-08-23	В	30	Brown	Sandy loam		2	0.23	49	4	51	1.7	0.92	0.2
3346	685654	5519980	AL	2021-08-23	В	20	Brown	Sandy loam		1	0.1	43	4	52	2.2	0.86	0.15
3347	685683	5519949		2021-08-23	_		Light brown	Sandy clay loam		2	0.22	36	4	52	2.1	0.69	0.17
3348	685731	5519917	_	2021-08-23			Brown	Sandy loam		2	0.19	54	5	54	2.6	0.81	0.19
3349	684719	5520470		2021-08-23			Dark brown	Clay loam		1	0.45	323	4	27	2.7	0.89	0.28
3350	684782	5519635		2021-08-22	_		Brown	Loam		1	0.18	38	4	38	2.7	0.43	0.15
3351	684818	5519600		2021-08-22			Brown	Sandy loam		4	0.12	30	3	23	1.6	0.21	0.15
3352	684854	5519566		2021-08-22			Grey-brown	Silt loam		4	0.08	23	2	26	1.1	0.22	0.13
3353	684885	5519533		2021-08-22	_		•	Silt loam		1	0.09	16	3	26	0.7	0.19	0.09
3354	684922	5519498		2021-08-22			Brown	Silt loam		1	0.09	23	3	28	1.1	0.2	0.11
3355 3356	684960 685001	5519456 5519433		2021-08-22			Tan brown Brown	Silt loam Clay loam		5	0.06	18 29	3	21 31	1.7	0.23	0.12 0.19
3357	685036	5519455		2021-08-22			Brown	Clay loam		0	0.08	29	3	29	1.7	0.31	0.19
3358	685074	5519362		2021-08-22			Brown	Silt loam		2	0.07	27	4	39	2.1	0.46	0.13
3359	685112	5519302		2021-08-22	_		Brown	Silt loam		2	0.07	22	4	31	2.1	0.48	0.13
3360	685159	5519289		2021-08-22			Brown	Silt loam		1	0.13	69	4	38	1.9	0.41	0.13
3361	685186	5519263	$\overline{}$	2021-08-22			Brown	Clay loam		1	0.11	70	4	35	3	0.31	0.16
3362	685228	5519224	-	2021-08-22			Brown	Silt loam		3	0.09	50	3	32	0.9	0.21	0.1
3363	684745	5519666	SG	2021-08-22	В	20	Brown	Loam		3	0.14	41	4	31	3	0.33	0.15
3364	684705	5519697	SG	2021-08-22	В	20	Brown	Silt loam		2	0.14	61	3	30	2.9	0.29	0.19
3365	684673	5519732	SG	2021-08-22	В	25	Dark brown	Loam		1	0.15	86	5	56	3.4	0.31	0.18
3366	684630	5519772	SG	2021-08-22	В	20	Brown	Loam		0	0.24	103	5	55	4.2	0.36	0.18
3367	684451	5519944	SG	2021-08-22	В	25	Brown	Silt loam		2	0.1	24	4	29	2.3	0.3	0.11
3368	684420	5519970	SG	2021-08-22	В	25	Brown	Clay loam		2	0.2	26	5	25	1.6	0.22	0.12
3369	684378	5520010		2021-08-22	В		Brown	Loamy sand		11	0.14	29	6	59	2.2	0.42	0.12
3370	684342	5520032	$\overline{}$	2021-08-22	_		Brown	Sandy clay loam		10	0.12	25	4	49	1.6	0.36	0.12
3371	684309	5520068		2021-08-22			Brown	Silt loam		2	0.12	26	4	47	2.3	0.33	0.12
3372	684268	5520107		2021-08-22			Brown	Sandy loam		1	0.06	20	4	58	1.3	0.51	0.11
3373	684233	5520138		2021-08-22			Brown	Loam		16	0.22	48	15	53	1.6	0.41	0.11
3374	684198	5520173		2021-08-22			Brown	Loam		3	0.11	27	4	44	1.9	0.43	0.15
3375	684160	5520207		2021-08-22	_		Brown	Loam		2	0.14	18	4	52	2.3	0.42	0.12
3376	684759	5520438		2021-08-23 2021-08-23			Brown	Sandy loam		2	0.09	17	4	36	2.1	0.5	0.12
3377 3378	684808 685117	5520413 5520097		2021-08-23			Brown Brown	Loamy sand Sandy loam		2	0.08	26 32	3	33 39	3.8 2.4	0.4	0.19 0.17
3379	685156	5520097	_	2021-08-23	_		Grey brown	Clay loam		6	0.23	37	3	35	1.4	0.4	0.17
3380	685196	5520063		2021-08-23			Brown	Sandy loam		1	0.17	19	3	32	1.7	0.27	0.10
3381	685228	5520041		2021-08-23			Brown	Sandy clay loam		1	0.13	25	3	32	1.9	0.32	0.11
3382	685265	5519969		2021-08-23			Brown	Sandy loam		2	0.03	18	3	27	1.7	0.32	0.13
3383	685299	5519942	$\overline{}$	2021-08-23			Brown	Loam		4	0.11	23	4	31	2.7	0.38	0.11
3384	685346	5519897		2021-08-23			Brown	Sandy clay loam		3	0.11	23	4	36	1.6	0.47	0.13
3304	003340	2212037	30	2021-00-23	<u> </u>	25	DIOWII	Sanuy clay loam		J	0.11	23		36	1.0	0.47	0.13

3385	685377	5519863	SG	2021-08-23	В	20	Brown	Sandy loam		2	0.1	45	4	44	1.8	0.58	0.14
3386	685414	5519830	SG	2021-08-23	В	20	Brown	Sandy loam		2	0.03	30	4	38	2	0.41	0.18
3387	685458	5519795	SG	2021-08-23	В	25	Brown	Clay loam		2	0.06	28	3	39	1.8	0.56	0.21
3388	685495	5519761	SG	2021-08-23	В	25	Brown	Sandy loam		1	0.1	31	4	45	1.8	0.52	0.14
Sample #	Easting	Northing	Sampler	Date	Horizon	Depth (cm)	Colour	Class	Comments	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Mo ppm	Sb ppm
3389	685525	5519730	SG	2021-08-23	В	25	Brown	Silt loam		1	0.07	25	4	39	1.5	0.48	0.13
3390	685562	5519683	CR	2021-08-23	В	22	Brown	Sandy clay loam		4	0.04	24	4	30	1.5	0.4	0.13
3391	685595	5519654	CR	2021-08-23	В	16	Light brown	Sandy clay loam		2	0.04	28	3	33	1.4	0.39	0.13
3392	685632	5519629	CR	2021-08-23	В	24	Light brown	Sandy clay loam		1	0.04	22	3	22	1.6	0.34	0.13
3393	685654	5519571	CR	2021-08-23	В	48	Light brown	Sandy clay loam		1	0.09	27	3	25	1.1	0.23	0.11
3394	685744	5519520	CR	2021-08-23	В	16	Light brown	Sandy clay loam		1	0.16	28	4	39	2.3	0.44	0.16
3395	685776	5519481	CR	2021-08-23	В	22	Light brown	Sandy clay loam		2	0.1	28	4	33	1.1	0.25	0.13
3396	685813	5519451	CR	2021-08-23	В	24	Brown	Clay loam		1	0.2	40	5	34	1.6	0.23	0.13
3397	685858	5519411	CR	2021-08-23	В	12	Light brown	Sandy clay loam		7	0.07	70	3	42	3	0.46	0.3
3398	685886	5519381	CR	2021-08-23	В	23	Brown	Clay loam		1	0.24	40	4	30	1.4	0.21	0.16
3399	686220	5519078	SG	2021-08-23	В	20	Brown	Sandy loam		1	0.06	44	5	52	2.5	0.5	0.16
3400	686176	5519110	SG	2021-08-23	В	20	Brown	Clay loam		2	0.07	34	5	49	2.4	0.56	0.26
3401	686141	5519139	SG	2021-08-23	В	20	Brown	Clay loam		1	0.09	34	5	49	1.7	0.39	0.15
3402	686106	5519178	SG	2021-08-23	В	20	Brown	Sandy loam		1	0.12	41	4	38	1.6	0.31	0.16
3403	686069	5519208	SG	2021-08-23	В	25	Brown	Loam		5	0.24	53	5	37	2.4	0.37	0.2
3404	686033	5519244	SG	2021-08-23	В	25	Brown	Loam		2	0.29	59	5	27	2.1	0.22	0.15
3405	685996	5519278	SG	2021-08-23	В	25	Brown	Loam		1	0.17	40	5	28	1.5	0.21	0.14
3406	685959	5519308	SG	2021-08-23	В	25	Brown	Clay loam		2	0.16	74	5	40	2.3	0.24	0.14
3407	685924	5519349	SG	2021-08-23	В	25	Brown	Clay loam		2	0.17	52	4	35	2.5	0.27	0.15

APPENDIX F

MARTIN ST. PIERRE - COPPERVIEW NORTH PROPERTY MOBILE MT INTERPRETATION

Subject: Copperview North MMT Interp

From: m-stpierre@shaw.ca

To: rfweicker@hotmail.com

Bob,

Here you go.

If you want the maps in different formats let me know.

Hope to work on Copperview south in the latter part of next week.

Cheers

Martin St-Pierre, P. Geoph

ST PIERRE GEOCONSULTANT Inc.

Tel: 604-464-7003

Cell: 604-512-4712

Email: m-stpierre@shaw.ca

COPPERVIEW NORTH PROPERTY MOBILE MT INTERPRETATION

INTRODUCTION

Golden Lake Resources Ltd executed an Expert Geophysics Ltd Mobile MT survey over its Copperview property located in southern British Columbia. A total of 770 km was flow at a nominal survey line spacing of 200m. The Expert Geophysics Ltd system uses a helicopter to transport a total field cesium magnetometer and the Mobile MT system. The magnetometer operated at a sampling rate of 10Hz. The Mobile MT system measured the total magnetic field derived from 3 orthogonal coils with a digitising rate of 2000 Hz and extracts telluric activity for frequencies ranging from 26 to 17,009 Hz. The products supplied by Expert Geophysics Ltd and used for the interpretation consist of the total magnetic field and the resistivity inversion for altitude levels from 1000 meters to -200 meters at 200 meter increments. The total magnetic data was inverted using the Geosoft Voxi software. The resultant 3D voxel was sliced at the same altitude level as the resistivity inversion.

Porphyry copper deposit is the primary exploration target and typically have lower electrical resistance then its host rock. Eight low resistivity anomalies were defined. They are presented on each altitude inversion slice maps. Also presented on the slice maps is a fault interpretation derived from the total magnetic field, and BC government assessment file occurrence locations which relate to either Alkalic Prophyry Cu-Au or Volcanic Redbed Cu. Claim blocks are also included.

PRESENTATION OF RESULTS AND DISCUSSION

The interpretation is presented in a series of fourteen figures that consist of two figures for each altitude inversion slice. The first figure shows the resistivity image altitude slice with the low resistivity anomalies outlines with names. The second shows the total magnetic inversion altitude slice with the low resistivity anomaly outlines included. All figures contain a fault interpretation derived from the total magnetic field, and BC government assessment file occurrence locations which relate to either Alkalic Prophyry Cu-Au or Volcanic Redbed Cu. Claim blocks are also included.

Porphyry copper deposit typically have lower electrical resistance then its host rock, and tend to have low to moderate magnetic susceptibility, although that is not always true. Higher priority will be given to low resistivity, low magnetic susceptibility anomalies. Also, porphyry copper deposits tend to have significant depth extent as they are derived from plutonic systems.

Anomaly A.

Anomaly A is located on the northwest side of the property. It is a north-south trending resistivity low that is inbounded by the survey block to the north. It is mostly coincident with elevated magnetic susceptibilities. We see the anomaly clearly on altitude slices from 1000 m to 200 m (Figures 1 to 10). On altitude slice 0 m (Figures 11 and 12) it is much weaker and disappears on

altitude slice -200 m (Figures 13 and 14). Due to its elevated magnetic susceptibility coincidence and its limited depth extend anomaly A is considered as a moderate priority target.

Anomaly B.

Anomaly B is located on the northeast side of the property. It is a north-south trending resistivity low that is inbounded by the survey block to the north. It is mostly coincident with low magnetic susceptibilities. We see the anomaly clearly on all altitude slices (Figures 1 to 14). Due to its low magnetic susceptibility coincidence and its unlimited depth extent, anomaly B is considered as a moderate to high priority target.

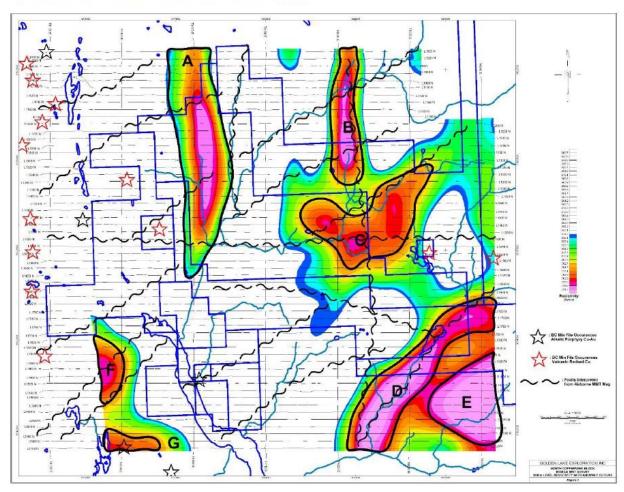
Anomaly C.

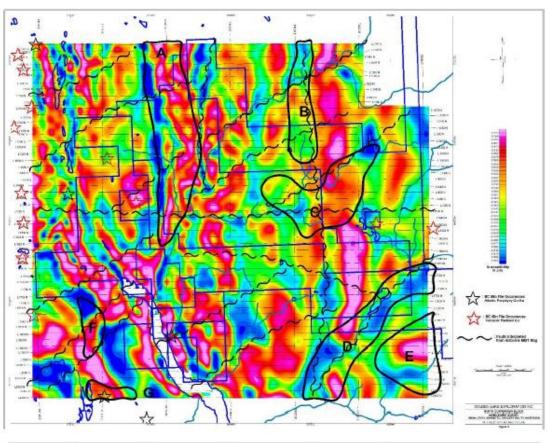
Anomaly C is located immediately south of anomaly B. It is a semi-circular resistivity low. It is mostly coincident with low magnetic susceptibilities. We see the anomaly clearly on all altitude slices (Figures 1 to 14). Due to its low magnetic susceptibility coincidence, anomaly C is considered as a high priority target.

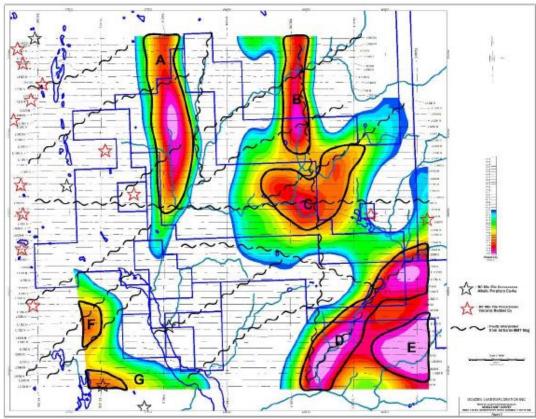
Anomaly D.

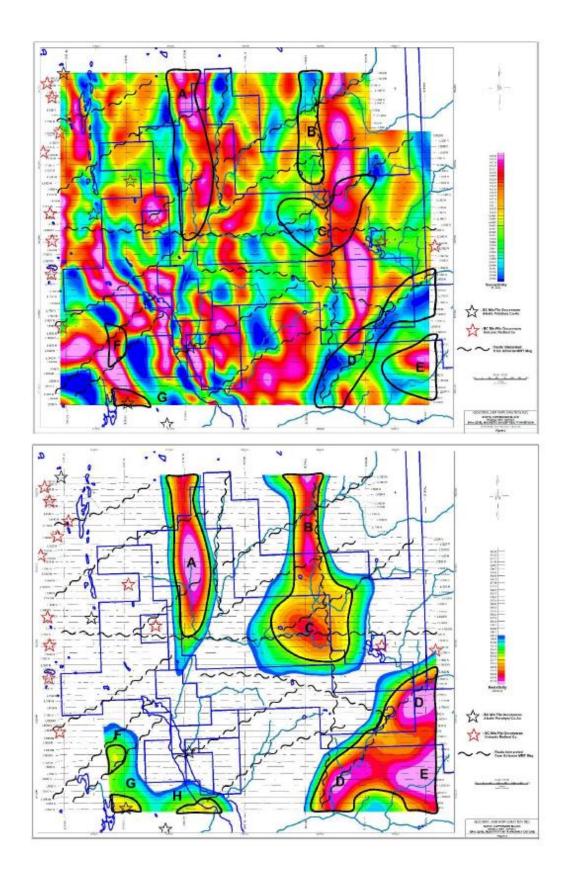
Anomaly D is located in the southeast corner of the survey block. It is a northeast trending resistivity low that is coincident with low magnetic susceptibilities where a fault has been interpreted. It is unbounded by the survey block at each end. We see the anomaly clearly on altitude slices from 1000 m to 400m (Figures 1 to 8). By altitude slice 200 m (Figures 9 and 10) in weakens significantly, and by altitude slice 0 m it had disappeared (Figures 11 and 12). Due to its low magnetic susceptibility coincidence and its limited depth extent anomaly E is considered as a moderate to high priority target.

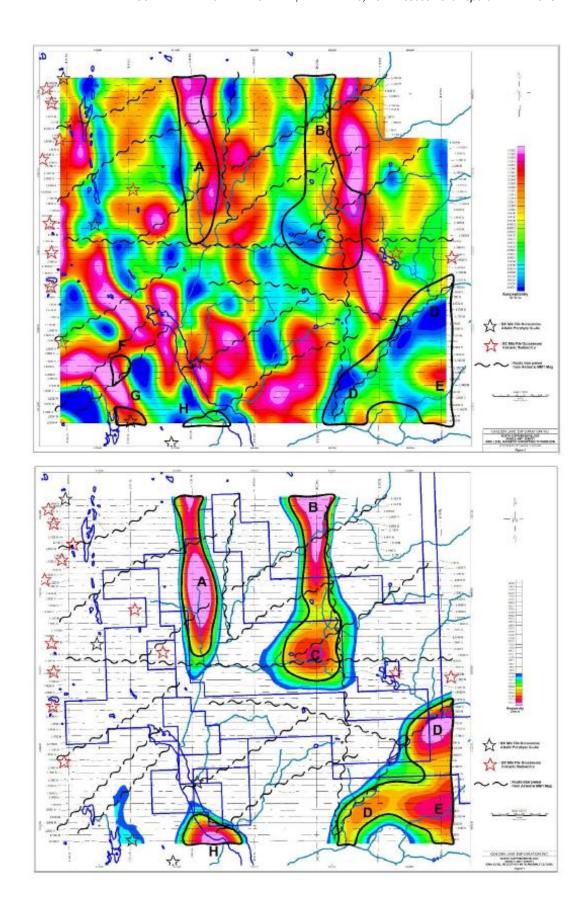
Anomaly E.

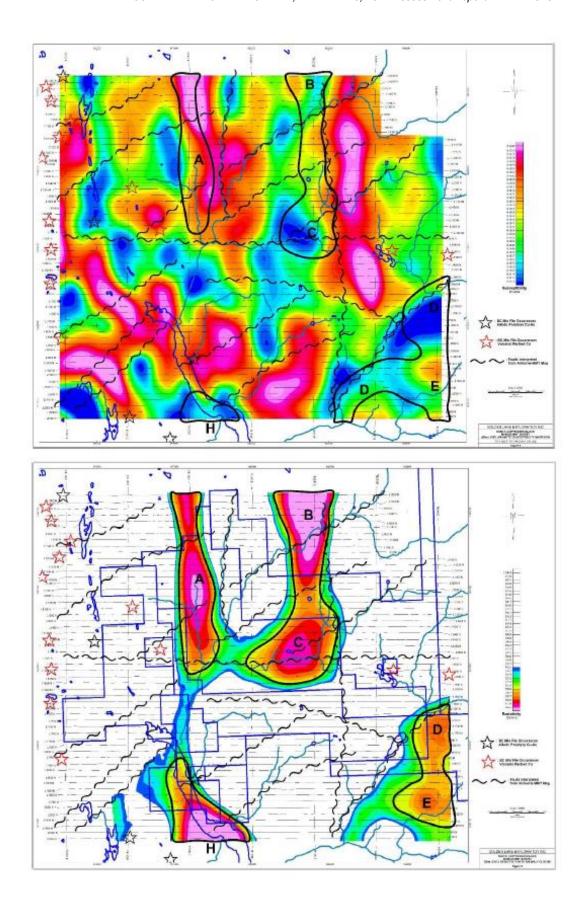

Anomaly E is located immediately southeast of anomaly D. It appears as a semi-circular resistivity low that is partially coincident with elevated magnetic susceptibilities. It is unbounded by the survey to the east. We see the anomaly clearly on altitude slices from 1000 m to 400m (Figures 1 to 8). By altitude slice 200 m (Figures 9 and 10) in weakens significantly, but remains present until altitude -200 m (Figures 11 to 14). Due to its partial high susceptibility coincidence and its significant weakening at depth anomaly E is considered as a moderate priority target.

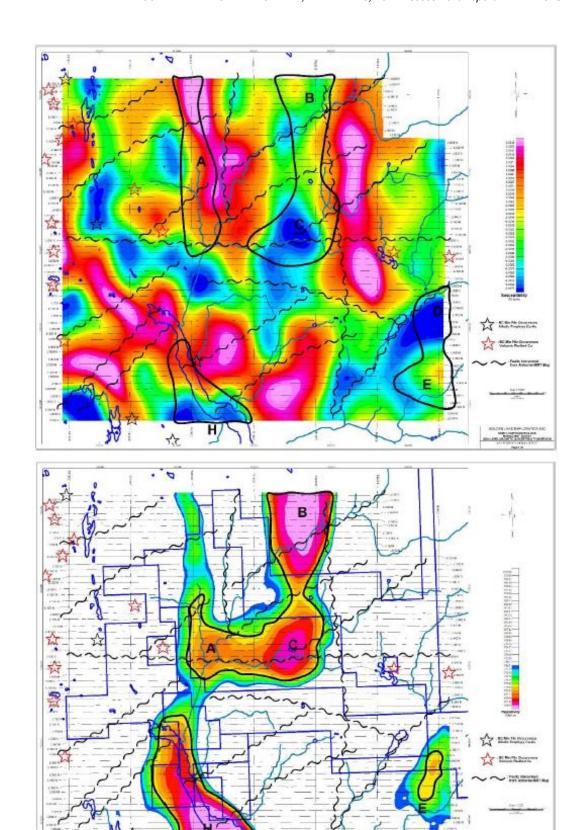

Anomalies F and G.

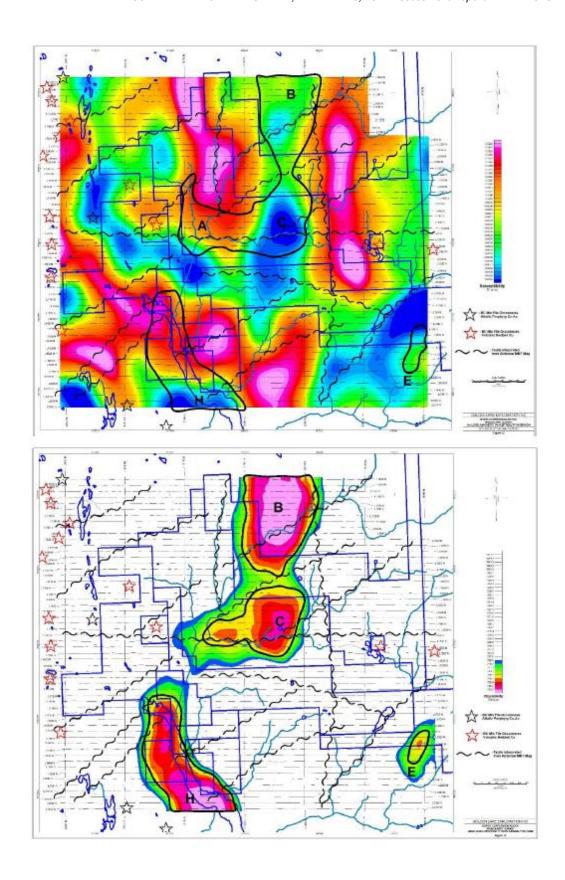

Anomaly F and G are located in the southwest corner of the survey area where the resistivity data is cut off due electrical cultural interference. They appear as a semi-circular resistivity low located within a complex magnetic susceptibility environment. The are unbounded by the survey to the west and south. We see the anomaly clearly on altitude slices from 1000 m to 600m (Figures 1 to 6). By altitude slice 400 m (Figures 7 and 8) they disappear. Anomaly G is coincident with a BC min file showing associated to alkalic Porphyry Cu-Au occurrence. Anomalies F and G are considered low to moderate priority.

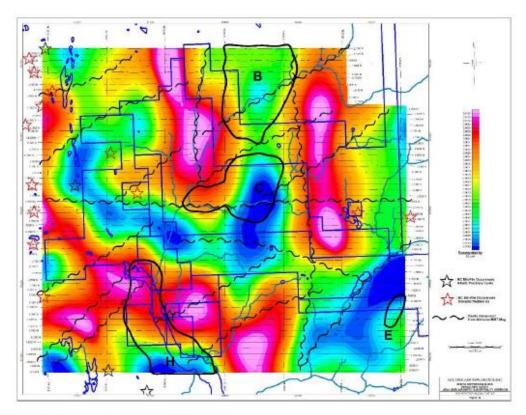

Anomaly H.


Anomaly H is located immediately east of anomaly G. It appears as a north-south trending resistivity low that complex magnetic susceptibilities. It is unbounded by the survey to the south. This anomaly first appears on the 600 m altitude slice (Figures 5 and 8), and becomes stronger with depth (Figures 9 to 14). As the depth increases it extends northward suggesting a possible relationship to anomaly A. It is coincident partially coincident with a long narrow lake and has a BC min file showing associated to alkalic Porphyry Cu-Au occurrence in close proximity. Due to its strong increase at depth and strong structural relationship expressed by the lake coincidence this anomaly is considered as Moderate to high.









CONCLUSIONS AND RECOMMENDATION

Golden Lake Resources Ltd executed an Expert Geophysics Ltd Mobile MT survey over its Copperview property located in southern British Columbia. A total of 770 km was flow at a nominal survey line spacing of 200m. The Expert Geophysics Ltd system uses a helicopter to transport a total field cesium magnetometer and the Mobile MT system. The magnetometer operated at a sampling rate of 10Hz. The Mobile MT system measured the total magnetic field derived from 3 orthogonal coils with a digitising rate of 2000 Hz and extracts telluric activity for frequencies ranging from 26 to 17,009 Hz. The products supplied by Expert Geophysics Ltd and used for the interpretation consist of the total magnetic field and the resistivity inversion for altitude levels from 1000 meters to -200 meters at 200 meter increments. The total magnetic data was inverted using the Geosoft Voxi software. The resultant 3D voxel was sliced at the same altitude level as the resistivity inversion.

Porphyry copper deposit is the primary exploration target and typically have lower electrical resistance then its host rock. Eight low resistivity anomalies were defined. They are presented on each altitude inversion slice maps. Also presented on the slice maps is a fault interpretation derived from the total magnetic field, and BC government assessment file occurrence locations which relate to either Alkalic Prophyry Cu-Au or Volcanic Redbed Cu. Claim blocks are also included.

Ranking of the anomalies in decreasing prioritys is as follows:

Anomaly C
Anomaly B
Anomaly D
Anomaly H
Anomaly A
Anomaly E
Anomaly G
Anomaly F

On a geophysical perspective it is recommended that IP be considered. The cheapest approach would Pole-Dipole 100m dipole spacing with N 1 to 8 separation for a 400 meter penetration. The most sophisticated and expensive approach would be 3D IP which could penetrate between 600 to 800m.